Status of Dark Matter Search with HDMS and GENINO

Dark Matter 2000, Marina del Ray
Feb. 25, 2000
The GENIUS Collaboration
February 2000

L. Baudis, A. Dietz, G. Heusser, H. V. Klapdor–Kleingrothaus*,
St. Kolb, B. Majorovits, H. Päs, F. Schwamm, H. Strecker
Max–Planck–Institut für Kernphysik, Heidelberg, Germany

O.A. Ponkratenko, V.I. Tretyak, Yu.G. Zdesenko
Institute of Nuclear research, Kiev, Ukraine

V. Alexeev, A. Balysh, A. Bakalyarov, S. T. Belyaev, V. I.
Lebedev, S. Zhukov
Kurchatov Institute, Moscow, Russia

U. Keyser, A. Paul, S. Röttger, A. Zimbal
Physikalisch-Technische Bundesanstalt, Braunschweig und Technische Universität Braunschweig, Germany

A. Yu. Smirnov
Internat. Center for Theoretical Physics, Trieste, Italy

V. Bednyakov
Joint Institute for Nuclear Research, Dubna, Russia

I.V. Krivosheina, V. Melnikov
Institute of Radiophysical Research, Nishnij Novgorod, Russia

P. Nath
Department of Physics, Northeastern University, Boston, USA

R.N. Mohapatra
Department of Physics, University of Maryland, USA

J.W.F Valle
Departamento de Fisica Teorica, University of Valencia, Spain

R. Arnowitt
Department of Physics, Texas A&M University, USA

* Spokesman of the Collaboration
Outline:

1. The present situation

2. The HDMS experiment

3. Results from the prototype detector

4. GENIUS and GENINO

5. Outlook and Conclusion
The present situation:

Evidence for WIMP dark matter (P. Belli this conference) through the signature of annual modulation in the spectrum of 100 kg NaI detector.

\[\sigma_{W-N, \text{scalar}} \text{ [pb]} \]

- Very important to check with independent measurement signal and signature
The Heidelberg Dark Matter Search (HDMS)

Idea of further background reduction:

→ Multiple scattered events can be considered as background

Simulations show: Reduction up to a factor of 20.

L. Baudis et al. NIM A 385(1997)265
The prototype detector:

The prototype detector was running for a period of 362.91 days from March 1998 until July 1999.

Technical data of the detector:

<table>
<thead>
<tr>
<th>Property</th>
<th>Inner Detector</th>
<th>Outer Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal Type</td>
<td>p-type</td>
<td>n-type</td>
</tr>
<tr>
<td>Mass [g]</td>
<td>202</td>
<td>2111</td>
</tr>
<tr>
<td>Active Volume [cc]</td>
<td>37</td>
<td>383</td>
</tr>
<tr>
<td>Crystal diameter [mm]</td>
<td>35.2</td>
<td>84.4</td>
</tr>
<tr>
<td>Crystal length [mm]</td>
<td>40.3</td>
<td>86.2</td>
</tr>
<tr>
<td>Operation Bias</td>
<td>+2500</td>
<td>-1500</td>
</tr>
<tr>
<td>FWHM (1332 keV) [keV]</td>
<td>1.87</td>
<td>4.45</td>
</tr>
<tr>
<td>Threshold [keV]</td>
<td>2.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Spectrum of outer detector after 362.91 days:

Identified peaks result from U/Th decay chains, ^{40}K and cosmogens

Also seen: α's → contamination from soldering tin
Spectrum of inner detector after 362.91 days:

Identified Peaks:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.37</td>
<td>1803 ± 48</td>
<td>2.00 ± 0.06</td>
<td>68Ga and other X-rays</td>
</tr>
<tr>
<td>32.46 ± 0.25</td>
<td>110 ± 16</td>
<td>2.63 ± 0.50</td>
<td>?</td>
</tr>
<tr>
<td>122.06</td>
<td>45 ± 11</td>
<td>1.78 ± 0.50</td>
<td>57Co</td>
</tr>
<tr>
<td>136.47</td>
<td>48 ± 17</td>
<td>7.48 ± 4.02</td>
<td>57Co</td>
</tr>
<tr>
<td>143.58</td>
<td>45 ± 10</td>
<td>1.417 ± 0.39</td>
<td>57Co</td>
</tr>
<tr>
<td>238.63</td>
<td>40 ± 12</td>
<td>3.35 ± 1.21</td>
<td>212Pb, 224Ra, 214Pb</td>
</tr>
<tr>
<td>240.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.00</td>
<td>284 ± 18</td>
<td>2.82 ± 0.16</td>
<td>annihil.</td>
</tr>
<tr>
<td>834.84</td>
<td>35 ± 8</td>
<td>6.46 ± 1.80</td>
<td>58Mn</td>
</tr>
<tr>
<td>1173.24</td>
<td>28 ± 6</td>
<td>2.22 ± 0.45</td>
<td>60Co</td>
</tr>
<tr>
<td>1332.50</td>
<td>20 ± 5</td>
<td>2.25 ± 0.59</td>
<td>60Co</td>
</tr>
</tbody>
</table>
Anticoincidence spectrum:

last 114.95 days of measurement

→ Suppression of \(\sim \) factor 4 (outer detector too thin).

But: Already now reached a background comparable to Heidelberg-Moscow-Experiment.
exclusion plot:

main background components:

- Cosmogenics
- Copper of Crystal holder
- Soldering tin for contacts
Background model:

Monte Carlo Simulation (GEANT3.21) → Most background components identified:

Upper panel: outer detector, high energy spectrum
Middle: inner detector, high energy spectrum
Lower panel: inner detector, low energy spectrum

In principle it is possible to subtract background model → Further improvement of sensitivity by approximately factor 2.
In future:

Setup with 73Ge-inner crystal will start measurement in summer 2000.

Further background suppression with respect to prototype is expected through:

- 73Ge crystal → Supression of 68Ge production up to a factor of 500!
- New crystal holder out of carefully selected copper
- No use of soldering tin.

→ HDMS will be able to test DAMA evidence region within the next three years.
GENIUS

Reduction of background by 3-4 orders of magnitudes:

→New technology:

’naked’ HPGe-crystals in LN$_2$

- LN$_2$ can be produced very clean
- Removal of all dangerous contaminations
- Shielding from external activity
- Efficient cooling of detectors

GENINO
An intermediate size detector for Wimp Dark Matter search

We showed earlier: The concept of the GENIUS project is very powerful.

First verify feasibility in a smaller setup with the same target mass: 100 kg of natural Germanium.

GENINO proposal: reduce the size of the tank by replacing part of the nitrogen shield by substantially denser medium: commonly used boliden lead.

electronics, holder system and clean room facilities can be used in both setups!
If reasonable sensitivity has to be achieved:

→ Size of setup is determined by influence of vessel wall: steel, polystyrene foam and boli- den lead.
→ Amount of boliden lead is given by surrounding gammas.

Increase of sensitivity by factor 20 →

- Minimal liquid nitrogen tank size: 5m in diameter
- Thickness of lead shielding: ~ 25cm
New background simulations

Simulated components:

A: Internal activities
- Cosmogenics
- Holder system
- Liquid nitrogen
- vessel: steel, polystyrene, lead

B: External activities
- Gamma flux from surrounding
- Neutron flux
- Muons
Simulated components:
Resulting sum spectrum:

<table>
<thead>
<tr>
<th>Source</th>
<th>Component</th>
<th>Count rate (11-100 keV) [counts/(kg y keV)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>U/Th/K/Rn</td>
<td>1×10⁻³</td>
</tr>
<tr>
<td>Steel vessel</td>
<td>U/Th</td>
<td>2.5×10⁻¹</td>
</tr>
<tr>
<td>Lead</td>
<td>U/Th</td>
<td>2×10⁻¹</td>
</tr>
<tr>
<td>Isolation</td>
<td>U/Th</td>
<td>7×10⁻²</td>
</tr>
<tr>
<td>Holder system</td>
<td>U/Th</td>
<td>1×10⁻²</td>
</tr>
<tr>
<td>Surrounding</td>
<td>Gammas(LE)</td>
<td>7×10⁻²</td>
</tr>
<tr>
<td></td>
<td>Gammas(HE)</td>
<td>5×10⁻³</td>
</tr>
<tr>
<td></td>
<td>Neutrons</td>
<td>8×10⁻³</td>
</tr>
<tr>
<td></td>
<td>Muon shower</td>
<td>2×10⁻²</td>
</tr>
<tr>
<td>Cosmogenics in Ge</td>
<td>⁵⁴Mn, ⁵⁷Co, ⁶⁰Co</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⁶³Ni, ⁶⁵Zn, ⁶⁸Ge</td>
<td></td>
</tr>
<tr>
<td>Cosmogenics in N</td>
<td>⁷Be, ¹⁴C</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7.5×10⁻¹ counts/(kg y keV)</td>
</tr>
</tbody>
</table>
→ The WIMP signal suggested by the DAMA experiment can be tested

→ The background is small enough and the target mass is high enough to also test the signature (annual modulation, see Cebrián et al. hep-ph/9912394)

→ Direct test of DAMA evidence possible in near future!
Conclusions:

- HDMS prototype proves: *technique is working*

- Start of measurement this summer

- Independent test of DAMA evidence region with the HDMS experiment is expected within three years

- As a first step towards the realization of GENIUS project we propose the intermediate size *GENINO* setup

- With the *GENINO* setup a test of *signal and signature* of dark matter WIMPs suggested by DAMA can be made.