You are at:

Stem Cell Transplant Restores Memory, Learning in Mice

 For the first time, human embryonic stem cells have been transformed into nerve cells that helped mice regain the ability to learn and remember.A study at the University of Wisconsin-Madison is the first to show that human stem cells can successfully implant themselves in the brain and then heal neurological deficits, says senior author Su-Chun Zhang, a professor of neuroscience and neurology.
Read More....
Comments (106)

Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia

Similarities of brain structure, function, and behavior are usually ascribed to convergent evolution. In their review, Strausfeld and Hirth (p. 157) identify multiple commonalities shared by vertebrate basal ganglia and a system of forebrain centers in arthropods called the central complex. The authors conclude that circuits essential to behavioral choice originated very early across phyla.Nicholas
Read More....
Comments (12)

See-through brains clarify connections

A chemical treatment that turns whole organs transparent offers a big boost to the field of ‘connectomics’ — the push to map the brain’s fiendishly complicated wiring. Scientists could use the technique to view large networks of neurons with unprecedented ease and accuracy. The technology also opens up new research avenues for old brains that were saved from patients and healthy donors.Helen
Read More....
Comments (9)

Developmental processes in face perception

Understanding the developmental origins of face recognition has been the goal of many studies of various approaches. Contributions of experience-expectant mechanisms (early component), like perceptual narrowing, and lifetime experience (late component) to face processing remain elusive. By investigating captive chimpanzees of varying age, a rare case of a species with lifelong exposure to non-conspecific
Read More....
Comments (1)

Grid cells require excitatory drive from the hippocampus

To determine how hippocampal backprojections influence spatially periodic firing in grid cells, the author recorded neural activity in the medial entorhinal cortex (MEC) of rats after temporary inactivation of the hippocampus. They report two major changes in entorhinal grid cells. First, hippocampal inactivation gradually and selectively extinguished the grid pattern. Second, the same grid cells that
Read More....
Comments (8)

Recurrent inhibitory circuitry as a mechanism for grid formation

Grid cells in layer II of the medial entorhinal cortex form a principal component of the mammalian neural representation of space. The firing pattern of a single grid cell has been hypothesized to be generated through attractor dynamics in a network with a specific local connectivity including both excitatory and inhibitory connections. However, experimental evidence supporting the presence of such
Read More....
Comments (1)

Light Switch Inside Brain: Laser Controls Individual Nerve Cells in Mouse

Activating and deactivating individual nerve cells in the brain is something many neuroscientists wish they could do, as it would help them to better understand how the brain works.  Scientists in Freiburg and Basel, Switzerland, have developed an implant that is able to genetically modify specific nerve cells, control them with light stimuli, and measure their electrical activity all at the same
Read More....
Comments

Memory on time

Considerable recent work has shown that the hippocampus is critical for remembering the order of events in distinct experiences, a defining feature of episodic memory. Correspondingly, hippocampal neuronal activity can ‘replay’ sequential events in memories and hippocampal neuronal ensembles represent a gradually changing temporal context signal. Most strikingly, single hippocampal neurons – called
Read More....
Comments

Eliminating Useless Information Important to Learning, Making New Memories

As we age, it just may be the ability to filter and eliminate old information -- rather than take in the new stuff -- that makes it harder to learn, scientists report.  "When you are young, your brain is able to strengthen certain connections and weaken certain connections to make new memories," said Dr. Joe Z. Tsien, neuroscientist at Georgia Regents University.  It's that critical weakening
Read More....
Comments

Long-term modification of cortical synapses improves sensory perception

Synapses and receptive fields of the cerebral cortex are plastic. However, changes to specific inputs must be coordinated within neural networks to ensure that excitability and feature selectivity are appropriately configured for perception of the sensory environment. The authors induced long-lasting enhancements and decrements to excitatory synaptic strength in rat primary auditory cortex by pairing
Read More....
Comments (8)

Newborn cortical neurons: only for neonates?

Despite a century of debate over the existence of adult cortical neurogenesis, a consensus has not yet been reached. Here, we review evidence of the existence, origin, migration, and integration of neurons into the adult and neonatal cerebral cortex. We find that the lack of consensus likely stems from the low rate of postnatal cortical neurogenesis that has been observed, the fact that neurogenesis
Read More....
Comments (4)

Humans can learn new information during sleep

During sleep, humans can strengthen previously acquired memories, but whether they can acquire entirely new information remains unknown. The nonverbal nature of the olfactory sniff response, in which pleasant odors drive stronger sniffs and unpleasant odors drive weaker sniffs, allowed us to test learning in humans during sleep. Using partial-reinforcement trace conditioning, the authors paired pleasant
Read More....
Comments (1)

Rats Recall Past to Make Daily Decisions

 UCSF scientists have identified patterns of brain activity in the rat brain that play a role in the formation and recall of memories and decision-making. The discovery, which builds on the team's previous findings, offers a path for studying learning, decision-making and post-traumatic stress syndrome.  In the journal Science this week (online May 3, 2012), the UCSF researchers demonstrated
Read More....
Comments (29)

Rats Match Humans in Decision-Making That Involves Combining Different Sensory Cues

The next time you set a trap for that rat running around in your basement, here's something to consider: you are going up against an opponent whose ability to assess the situation and make decisions is statistically just as good as yours.   A Cold Spring Harbor Laboratory (CSHL) study that compared the ability of humans and rodents to make perceptual decisions based on combining different
Read More....
Comments

Pattern separation in the hippocampus

The ability to discriminate among similar experiences is a crucial feature of episodic memory. This ability has long been hypothesized to require the hippocampus, and computational models suggest that it is dependent on pattern separation. However, empirical data for the role of the hippocampus in pattern separation have not been available until recently. This review summarizes data from electrophysiological
Read More....
Comments

Human Brain Evolution: Harnessing the Genomics (R)evolution to Link Genes, Cognition, and Behavio

The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use
Read More....
Comments (2)
See Older Posts...
 You are at: