You are at:

Scientists Discover How Epigenetic Information Could Be Inherited: Mechanism of Epigenetic Reprogramming Revealed

New research reveals a potential way for how parents' experiences could be passed to their offspring's genes. The research was published January, 25 in the journal Science.Science Daily, Jan 25, 2013Mouse primordial germ cells (PGCs) undergo sequential epigenetic changes and genome-wide DNA demethylation to reset the epigenome for totipotency. Here, the authors demonstrate that erasure of CpG
Read More....
Comments

Synthetic double-helix faithfully stores Shakespeare's sonnets

A team of scientists has produced a truly concise anthology of verse by encoding all 154 of Shakespeare’s sonnets in DNA. The researchers say that their technique could easily be scaled up to store all of the data in the world. Along with the sonnets, the team encoded a 26-second audio clip from Martin Luther King’s famous “I have a dream" speech, a copy of James Watson and Francis Crick’s
Read More....
Comments (2)

The Cell That Isn't: New Technique Captures Division of Membrane-Less Cells

A new technique allows scientists to study cell division without a cell membrane. There are several advantages: it can be physically constrained and manipulated; one can access nuclei which is normally buried deep in an opaque embryo; the method ican be combined with a wide-range of fruit fly genetics techniques. The method has revealed that, surprisingly, confined space not enough to restrict spindle
Read More....
Comments (2)

The evolutionary causes and consequences of sex-biased gene expression

Females and males often differ extensively in their physical traits. This sexual dimorphism is largely caused by differences in gene expression. Recent advances in genomics, such as RNA sequencing (RNA-seq), have revealed the nature and extent of sex-biased gene expression in diverse species. Here the authors highlight new findings regarding the causes of sex-biased expression, including sexual antagonism
Read More....
Comments

RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond

A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction
Read More....
Comments (1)

Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration

The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants
Read More....
Comments (1)

Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice

The genetics of behavioural differences between closely related species are less well understood than the genetics of morphological differences. Many animals build elaborate structures — such as hives, nests and burrows — that 'evolve' as natural selection acts on the behaviour of their builders. This study uses an example of this phenomenon to tackle the question of whether complex behaviours
Read More....
Comments (24)

Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants

Understanding the extent, distribution and age of human protein-coding genetic variants across diverse populations allows fascinating insights into human population dynamics and the resultant evolutionary forces. Cataloguing and dating such variation will also allow us to understand the origin of the seemingly endless list of potential disease variants and to prioritize among them for further investigation.
Read More....
Comments

Regenerate Sensory Hair Cells, Restore Hearing to Noise-Damaged Ears

Hearing loss is a significant public health problem affecting almost 50 million people in the United States alone. Sensorineural hearing loss is the most common form and is caused by the loss of sensory hair cells in the cochlea. Hair cell loss results from a variety of factors including noise exposure, aging, toxins, infections, and certain antibiotics and anti-cancer drugs. Although hearing aids
Read More....
Comments (1)

Ion Channels | TRP Channels in Drosophila Auditory Transduction

In this study, Lehnert et al. record spikes and subthreshold activity from a genetically defined population ofDrosophila auditory receptor neurons. These recordings reveal that several TRP family members play distinct roles in converting movement to transduction currents.Lehnert et al.Neuron, Volume 77, Issue 1, 115-128, 9 January 201310.1016/j.neuron.2012.11.030
Read More....
Comments

'Junk DNA' Made Visible Before the Final Cut

Research findings from the University of North Carolina School of Medicine are shining a light on an important regulatory role performed by the so-called dark matter, or "junk DNA," within each of our genes. The new study reveals snippets of information contained in dark matter that can alter the way a gene is assembled. "These small sequences of genetic information tell the gene how to splice, either
Read More....
Comments (3)

In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons

The molecular mechanisms that control how progenitors generate distinct subtypes of neurons, and how undifferentiated neurons acquire their specific identity during corticogenesis, are increasingly understood. However, whether postmitotic neurons can change their identity at late stages of differentiation remains unknown. To study this question, the authors developed an electrochemical in vivo gene
Read More....
Comments

The Immune System's Compact Genomic Counterpart

Much of the human genome derives from self-serving DNA strands known as transposons. These genetic gypsies often jump to new chromosome locations, sometimes disabling genes and even triggering cancer. For that reason, a specialized group of RNA molecules known as piRNAs are the superheroes of animal genomes. piRNAs team up with certain proteins to shackle transposons in animal germline cells, creating
Read More....
Comments

Cancer-Specific Killer T Cells Created from Induced Pluripotent Stem Cells (iPSC)

Researchers from the RIKEN Research Centre for Allergy and Immunology in Japan report today that they have succeeded for the first time in creating cancer-specific immune system cells called killer T lymphocytes from induced pluripotent stem cells (iPS cells). To create these killer cells, the team first had to reprogram T lymphocytes specialized in killing a certain type of cancer, into iPS cells.
Read More....
Comments (2)

All-in-one optogenetics

Scientists reverse engineer fluorescent proteins for light-mediated control.Optogenetics is a young discipline that is coming on strong in fields such as neuroscience and protein signaling. It refers to the use of light-sensitive proteins to control cellular processes in living cells and organisms. Optogenetic tools can also be used to sense biological processes. Each of these applications has been
Read More....
Comments

A subpopulation of nociceptors specifically linked to itch

A method for tagging single transcripts with two fluorescent markers can be used to study many aspects of gene expression, including intrinsic noise in transcription or polymerase dynamics at a single gene, report Singer and colleagues.Lian Han et al.Nature Neuroscience (2012) doi:10.1038/nn.3289
Read More....
Comments

Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation

An international team, led by researchers from UC San Diego,  has discovered that "random" mutations in the genome are not quite so random after all. Their study, to be published in the journal Cell on December 21, shows that the DNA sequence in some regions of the human genome is quite volatile and can mutate ten times more frequently than the rest of the genome. Genes that are linked to autism
Read More....
Comments

How do environments talk to genes?

In Nature Neuroscience January 2013 issue, Moshe Szyf explains the environmental interaction onto genes. A report elucidates the widely recognized, but poorly understood, concept of gene-environment interaction, finding a molecular mechanism in the case of post-traumatic stress disorder: demethylation of a glucocorticoid response element in the stress response regulator FKBP5 that depends on both the
Read More....
Comments (20)

Retooling spare parts: gene duplication and cognition

Two new studies provide experimental evidence of how ancient genomic duplications of synaptic genes provided the substrate for diversification that ultimately expanded vertebrate cognitive complexity.T Grant Belgard & Daniel H GeschwindNature Neuroscience 16, 6–8 (2013) doi:10.1038/nn.3292Published online 21 December 2012
Read More....
Comments (22)

Genomic variation landscape of the human gut microbiome

Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. The authors developed a framework for metagenomic variation analysis and applied it to 252 faecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference
Read More....
Comments (4)

Synaptic scaffold evolution generated components of vertebrate cognitive complexity

The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here the authors report the first genetic analysis of a vertebrate
Read More....
Comments

Evolution of Human Intellect: Human-Specific Regulation of Neuronal Genes

A new study published November 20 in the open-access journal PLOS Biology has identified hundreds of small regions of the genome that appear to be uniquely regulated in human neurons. These regulatory differences distinguish us from other primates, including monkeys and apes, and as neurons are at the core of our unique cognitive abilities, these features may ultimately hold the key to our intellectual
Read More....
Comments (2)

Evolution of genetic and genomic features unique to the human lineage

Given the unprecedented tools that are now available for rapidly comparing genomes, the identification and study of genetic and genomic changes that are unique to our species have accelerated, and we are entering a golden age of human evolutionary genomics. Here the authors provide an overview of these efforts, highlighting important recent discoveries, examples of the different types of human-specific
Read More....
Comments (2)

Studying genomic processes at the single-molecule level: introducing the tools and applications

To understand genomic processes such as transcription, translation or splicing, we need to be able to study their spatial and temporal organization at the molecular level. Single-molecule approaches provide this opportunity, allowing researchers to monitor molecular conformations, interactions or diffusion quantitatively and in real time in purified systems and in the context of the living cell. This
Read More....
Comments (7)

In vivo genome editing using a high-efficiency TALEN system

Improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications1–5. Using the Goldy TALEN modified scaffold and zebrafish delivery system, it was shown that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in
Read More....
Comments (7)

ENCODE Project Writes Eulogy For Junk DNA

SCIENCE VOL 337 7 SEPTEMBER 201230 research papers, including six in Nature and additional papers published by Science, sound the death knell for the idea that our DNA is mostly littered with useless bases. A decadelong project, the Encyclopedia of DNA Elements (ENCODE), has found that 80% of the human genome serves some purpose, biochemically speaking.
Read More....
Comments (21)

Stem Cell Revolution: Regenerating the Eye

Research is breaking new ground that promises to change our ability to treat eye disease forever.Although stem cells were discovered in the mid-1800s and the subject of experimentation in the early 1900s, it’s only been in recent decades that they’ve truly caught the imagination of medical researchers and the public. Today, our understanding of these cells is expanding dramatically, and research
Read More....
Comments

Hearing Impairment: A Panoply of Genes and Functions

Research in the genetics of hearing and deafness has evolved rapidly over the past years, providing the molecular foundation for different aspects of the mechanism of hearing. Considered to be the most common sensory disorder, hearing impairment is genetically heterogeneous. The multitude of genes affected encode proteins associated with many different functions, encompassing overarching areas of research.
Read More....
Comments (1)

The evolutionary significance of ancient genome duplications

Many organisms are currently polyploid, or have a polyploid ancestry and now have secondarily 'diploidized' genomes. This finding is surprising because retained whole-genome duplications (WGDs) are exceedingly rare, suggesting that polyploidy is usually an evolutionary dead end. We argue that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever
Read More....
Comments (1)

'Junk' DNA Proves To Be Highly Valuable

What was once thought of as DNA with zero value in plants--dubbed "junk" DNA--may turn out to be key in helping scientists improve the control of gene expression in transgenic crops.  For more than 30 years, scientists have been perplexed by the workings of intergenic DNA, which is located between genes. Scientists have since found that, among other functions, some intergenic DNA plays a physical
Read More....
Comments
See Older Posts...
 You are at: