You are at:

New Information on Autism and Genetics

Research out of the George Washington University reveals another piece of the puzzle in a genetic developmental disorder that causes behavioral diseases such as autism. "It tell us that in very early development, those with 22q11.2 deletion syndrome do not make enough cells in one case, and do not put the other cells in the right place. This occurs not because of some degenerative change, but because
Read More....
Comments

Neuronal reference frames for social decisions in primate frontal cortex

Steve Chang et. al. studied encoding of the outcomes of social decisions in three frontal cortical areas as monkeys performed a social reward allocation task. Orbitofrontal cortex neurons signaled received rewards, anterior cingulate (ACC) sulcus neurons signaled foregone rewards, and the ACC gyrus was involved in the computation of shared experience and social reward. Nature Neuroscience (2012) doi:10.1038/nn.3287
Read More....
Comments

Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation

An international team, led by researchers from UC San Diego,  has discovered that "random" mutations in the genome are not quite so random after all. Their study, to be published in the journal Cell on December 21, shows that the DNA sequence in some regions of the human genome is quite volatile and can mutate ten times more frequently than the rest of the genome. Genes that are linked to autism
Read More....
Comments

Synaptic scaffold evolution generated components of vertebrate cognitive complexity

The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here the authors report the first genetic analysis of a vertebrate
Read More....
Comments

Disorder of Neuronal Circuits in Autism Is Reversible, New Study Suggests

People with autism suffer from a pervasive developmental disorder of the brain that becomes evident in early childhood. Peter Scheiffele and Kaspar Vogt, Professors at the Biozentrum of the University of Basel, have identified a specific dysfunction in neuronal circuits that is caused by autism. In the journal Science, the scientists also report about their success in reversing these neuronal changes.
Read More....
Comments (4)

Interneuron dysfunction in psychiatric disorders

Schizophrenia, autism and intellectual disabilities are best understood as spectrums of diseases that have broad sets of causes. However, it is becoming evident that these conditions also have overlapping phenotypes and genetics, which is suggestive of common deficits. In this context, the idea that the disruption of inhibitory circuits might be responsible for some of the clinical features of these
Read More....
Comments
See Older Posts...
 You are at: