Trends, Needs and Dreams in Astro-Physics

Katsushi Arisaka

University of California, Los Angeles
Department of Physics and Astronomy

arisaka@physics.ucla.edu
Talk Outline

- **Astro-Physics**
 - Cosmology
 - High-energy Particle Astro-physics

- **Experiments**
 - Ongoing
 - Future

- **Photo-detectors**
 - Demands
 - New Detectors on Horizon
 - Dream Detectors
Talk Outline

- **Astro-Physics**
 - Cosmology
 - High-energy Particle Astro-physics

- Experiments
 - Ongoing
 - Future

- Photo-detectors
 - Demands
 - New Detectors on Horizon
 - Dream Detectors
Hubble Deep Field

~100 Billion Galaxies

Red shift up to 10
Evolution of the Early Universe

Time (sec)	Temp. (°K)	Energy (GeV)	Radius of Universe (cm)	Now
10^{-45} | 10^{30} | 10^{18} | 10^{-33} | Golf Ball
10^{-40} | 10^{25} | 10^{15} | 10^{-20} | People
10^{-35} | 10^{20} | 10^{12} | 10^{-15} | Mountain
10^{-30} | 10^{15} | 10^{9} | 10^{-10} | Earth
10^{-25} | 10^{10} | $1PeV$ | 10^{-5} | 1 A.U.
10^{-20} | 10^{5} | $1TeV$ | 10^{5} | 1 Light Year
10^{-15} | | $1GeV$ | 10^{10} | Galaxy
10^{-10} | | $1MeV$ | | |
10^{-5} | | $1KeV$ | | |
1 | 10^{10} | $1eV$ | | |
10^{5} sec | 10^{5} | $10^{-3}eV$ | | |
1 year | | | | |
10^{3} | | | | |
10^{6} | | | | |
10^{9} year | | | | |

June 17, 2002
Beaune 2002, Katsushi Arisaka
Tools to explore the Early Universe

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Temp. (°K)</th>
<th>Energy (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-45}</td>
<td></td>
<td>10^{18}</td>
</tr>
<tr>
<td>10^{-40}</td>
<td>10^{30}</td>
<td>10^{15}</td>
</tr>
<tr>
<td>10^{-35}</td>
<td>10^{25}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>10^{-30}</td>
<td>10^{20}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>10^{-25}</td>
<td>10^{15}</td>
<td>1 PeV</td>
</tr>
<tr>
<td>10^{-20}</td>
<td>10^{10}</td>
<td>1 TeV</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>10^{5}</td>
<td>1 GeV</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>10^{0}</td>
<td>1 MeV</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1</td>
<td>1 KeV</td>
</tr>
<tr>
<td>1</td>
<td>10^{10}</td>
<td>1 eV</td>
</tr>
<tr>
<td>10^3</td>
<td>10^5</td>
<td>10^{-3} eV</td>
</tr>
<tr>
<td>10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^9 year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accelarator

Telescope
Unification of Fundamental Forces

Time (sec)	Temp. (°K)	Energy (GeV)
10^{-45} | 10^{30} | 10^{18}
10^{-40} | 10^{25} | 10^{15}
10^{-35} | 10^{20} | 10^{12}
10^{-30} | 10^{15} | 10^9
10^{-25} | 10^{10} | 10^4
10^{-20} | 10^6 | 10^1
10^{-15} | 10^3 | 1
10^{-10} | 1 | 10^{-5}
10^{-5} | 10^{-3} | 10^{-6}
1 | 10^{-9} | 10^{-9}
10^5 sec | 10^5 | 10^{-3}
1 year | 10^5 | 10^{-3}
10^3 | 10^5 | 10^{-6}
10^6 | 10^6 | 10^{-9}
10^9 year | 10^9 | 10^{-12}

Planck
GUT
EW
Gravitation
Strong
Weak
Electromagnetic

Fundamental Interaction

Energy (GeV)
1 PeV
1 TeV
1 GeV
1 MeV
1 KeV
1 eV
10^{-3} eV

Now
Physicists’ View of Early Universe
Symmetry Breaking

Time (sec) Temp. (°K) Energy (GeV)

10^{-45} sec 10^30 10^{18}
10^{-40} 10^25 10^{15}
10^{-35} 10^{20} 10^{12}
10^{-30} 10^{15} 10^9
10^{-25} 10^{10} 10^6
10^{-20} 10^5 10^3
10^{-15} 10^{2} 1
10^{-10} 10^{-5} 10^{-10}
10^{-5} 10^{-15} 10^{-20}
1 10^{-25} 10^{-30}
10^5 sec 1 year 10^{-30}
10^{3} 10^{-4} 10^{-3}
10^{6} 10^{-7} 10^{-6}
10^{9} year 10^{-8} 10^{-5}

Simple

Symmetry Break Down

Complex
Relics from the Earliest Universe

Time (sec)	Temp. (°K)	Energy (GeV)
10^{-45} | 10^3 | 10^{18} |
10^{-40} | 10^{25} | 10^{15} |
10^{-35} | | 10^{12} |
10^{-30} | | 10^9 |
10^{-25} | | $1 PeV$ |
10^{-20} | | $1 TeV$ |
10^{-15} | | $1 GeV$ |
10^{-10} | | $1 MeV$ |
10^{-5} | | $1 KeV$ |
1 | 10^{10} | $1 eV$ |
10^5 sec | 10^5 | $10^{-3} eV$ |
1 year | | | Now
10^3 | | | |
10^6 | | | |
10^9 year | | | |

Big Bang

Gravitational Wave
GUT Particle

Neutralino
(Cold Dark Matter)

Relic Neutrino
(Hot Dark Matter)

CMB
CMB Anisotropy by COBE DMR

North Galactic Hemisphere

South Galactic Hemisphere

$-100 \mu K$ $100 \mu K$
CMB Anisotropy by Boomerang
Recent Results of CMB Anisotropy

Angular Scale [Degrees]

ℓ vs. $\left(\ell+1\right)C_{\ell}/2\pi^{1/2}$ [μK]

- COBE
- MAXIMA
- BOOM2001
- DASI

N=1 H=50 CDM+10% B

Ned Wright - 6 May 2001
The Accelerating Universe

[Graph showing Type Ia Supernovae data with different cosmological models: Open, Flat, and Closed. The graph compares magnitude against redshift, illustrating the accelerating universe concept.]
Density of Our Universe

- Universe is Flat. \Rightarrow Inflation
- 70% is Dark Energy. \Rightarrow Accelerating
Talk Outline

- Astro-Physics
 - Cosmology
 - High-energy Particle Astro-physics

- Experiments
 - Ongoing
 - Future

- Photo-detectors
 - Demands
 - New Detectors on Horizon
 - Dream Detectors
Relics from the Earliest Universe

Time (sec)

- 10^{-45} sec
- 10^{-40}
- 10^{-35}
- 10^{-30}
- 10^{-25}
- 10^{-20}
- 10^{-15}
- 10^{-10}
- 10^{-5}
- 1
- 10^5 sec
- 1 year
- 10^3
- 10^6
- 10^9 year

Temperature ($^\circ$K)

- 10^{30}
- 10^{25}
- 10^{20}
- 10^{15}
- 10^{10}
- 10^5
- 10^3
- 10^6
- 10^9

Energy (GeV)

- 10^{18}
- 10^{15}
- 10^{12}
- 10^9
- 10^7
- 10^5
- 10^3
- 10^{-3}

Energy (eV)

- 10^{30}
- 10^{25}
- 10^{20}
- 10^{15}
- 10^{10}
- 10^5
- 10^3
- 10^1

Gravitational Wave

GUT Particle

Neutralino
(Cold Dark Matter)

Relic Neutrino
(Hot Dark Matter)

CMB

Dark Energy

Big Bang
Messengers from the Universe

- **Photons**
 - Visible, Infrared, UV
 - X-rays, Gamma-rays
 - Microwave, Radio

- **Charged Particles**
 - Ultra High Energy Cosmic Rays
 - Anti-particles

- **Neutrinos**
 - Solar-neutrino, Supernova
 - Relic Neutrino

- **Dark Matter**

- **Gravitons**

 not covered in this talk
Messengers from the Universe

- **Photons**
 - Visible, Infrared, UV
 - X-rays, Gamma-rays
 - Microwave, Radio

- **Charged Particles**
 - Ultra High Energy Cosmic Rays
 - Anti-particles

- **Neutrinos**
 - Solar-neutrino, Supernova
 - Relic Neutrino

- **Dark Matter**

- **Gravitons**
SDSS (Sloan Digital Sky Survey)

- 2.5m Diameter
- $3^\circ \times 3^\circ$ FOV
- f/2.25
- 30 x 4Mega-pixel CCD
SDSS Early Data Release

Goal:

500 sq. degree of the sky.

14 million objects.

Spectra for 50,000 galaxies 5,000 quasars.
LSST (Large-aperture Synoptic Survey Telescope)

- 8m Diameter
- $3^\circ \times 3^\circ$ FOV
- f/1.2, 50cm Focal plane
- 1.4Giga-pixel CCD
NGST (Next Generation Space Telescope)

- Mirror Diameter: ~6.5 m
- FOV: 4’ x 4’
- Wavelength: 0.6-28 μm
- Orbit: L2 point
- Payload mass: ~3000 kg
- Mission duration: 5-10 years

GSFC Design
SNAP (SuperNova Acceleration Probe)

- Mirror Diameter: 2 m
- FOV: 1° x 1°
- Wavelength: 0.35-1 µm
- IR Photometry: 10’ x 10’, HgCdTd
- IR Spectroscopy: 2” x 2”
SNAP – Dark Energy Sensitivity

Current ground-based data compared with binned simulated SNAP data and a sample of Dark Energy models. Each SNAP point represents ~50-supernova bin.
Deep Sky Survey by Telescopes

Field of View (Degree)

Mirror Diameter (Meter)

- Space
 - HST
 - SNAP
 - NGST

- Ground
 - LSST
 - Keck

Larger Mirror
Larger FOV
The Extreme Universe

AGN

SNR

Radio Galaxy

EGRET All-Sky Map Above 100 MeV

Pulsar

GRB
GLAST - Gamma Ray Sky Survey

Si Strip

CsI + Photo Diode

Exploded View: One of Forty-nine Towers

Gamma-ray Large Area Space Telescope

10 Layers of 0.5 rad Length Converter (pb)
12 Layers of XY Silicon Strips

Gamma Rays
Positrons/Electrons
Gamma ray Telescopes

VERITAS

- 8.5 km
- 0.8°
- Cerenkov Light Cone
- 80 m
- ~0.05 - 50 TeV

HESS

- 10 m Diameter
- ~500 PMT/Camera
- 4-7 Telescopes

June 17, 2002
Beaune 2002, Katsushi Arisaka
MAGIC under Construction

- 17m mirror
- 3.6° FOV
- 600 PMTs
- Upgrade to GaAsP HAPD
γ-ray Wide-FOV Telescope

- >3m diameter
- >30° FOV
- Mega pixel
Messengers from the Universe

- **Photons**
 - Visible, Infrared, UV
 - X-rays, Gamma-rays
 - Micro-wave, Radio

- **Charged Particles**
 - Ultra High Energy Cosmic Rays
 - Anti-particles

- **Neutrinos**
 - Solar-neutrino, Supernova
 - Relic Neutrino

- **Dark Matter**

- **Gravitons**
Energy Spectrum of Cosmic Rays

- Energy Spectrum $\sim E^{-3}$
- The spectrum extends beyond 10^{20} eV
- Beyond 10^{20} eV, Flux is only one particle per km2-century

1 TeV
Tools to explore the Early Universe

Time (sec)	Temp. (°K)	Energy (GeV)
10^{-45} | 10^3 | 10^{18}
10^{-40} | 10^9 | 10^{15}
10^{-35} | 10^{15} | 10^{12}
10^{-30} | 10^{20} | 10^9
10^{-25} | 10^{25} | 10^6
10^{-20} | 10^{30} | 10^3
10^{-15} | 10^{35} | 1
10^{-10} | 10^{40} | 10^1
10^{-5} | 10^{45} | 10^{-3}
1 | 10^{50} | 10^{-6}
10^5 sec | 10^5 | 10^{-9}
1 year | 10^6 | 10^{-12}
10^3 | 10^9 | 10^{-15}
10^6 | 10^{12} | 10^{-18}
10^9 year | 10^{15} | 10^{-21}

UHE Cosmic Rays

Accelerator

Telescope
Why is 10^{20}eV so special?

- Nearly impossible to accelerate beyond 10^{20}eV by nature.
 → Top-down Mechanism?

- Protons can travel straight at $E > 10^{20}$eV.
 → Charged-Particle Astronomy

- Protons can \underline{not} travel beyond ~ 50Mpc at $E > 5 \times 10^{19}$eV due to interaction with CMB.
 → ZGK Cut-off
Pierre-Auger Observatory

Northern Auger in Utah

Southern Auger in Argentina

50 km
Surface Detector and the Andes

1,600 Water Tanks x 3 PMTs = 4,800 of 9” PMTs
EUSO on International Space Station
Night Sky
EUSO Detector

- 2.5m Diameter
- 60° FOV
- f/1.25

Support structure

Electronic system

Focal surface detector

Hamamatsu R7600-M16/64 250k Pixel

Optics system
OWL Stereo View from Space

~1,000km
AMS - Anti-Matter Search

- RICH uses Multi-anode PMT
- Hamamatsu R7600-M16
- 14k Pixel

Measuring $V(V < C)$ to the accuracy of 0.1%, to identify He^3, He^4, ...
Messengers from the Universe

- **Photons**
 - Visible, Infrared, UV
 - X-rays, Gamma-rays
 - Micro-wave, Radio

- **Charged Particles**
 - High Energy Cosmic Rays
 - Anti-particles

- **Neutrinos**
 - Solar-neutrino, Supernova
 - Relic Neutrino

- **Dark Matter**

- **Gravitons**
Super-Kamiokande

- 11,200 of 20” PMTs
- Expected to resume end of this year with 50% PMTs
Future: Hyper-K/UNO

~200k of 20” PMTs

1 Mton fiducial volume: Total Length 800m (16 Compartments)
NESTOR and ANTARES

NESTOR

ANTARES

June 17, 2002
AMANDA

Depth

surf at 80 m

snow layer

AMANDA-A

AMANDA-B10

Optical Module

main cable

pressure housing

silicon gel

light diffuser ball

Eiffel Tower as comparison (true scaling)

AMANDA as of 2000

zoomed in on AMANDA A (top)

AMANDA B10 (bottom)

zoomed in on one optical module (Ohl)
ICECUBE

10 TeV Muon Event

60 PMTs/string x 80 strings = 4,800 PMTs

1 km
Detection of Cosmic Radiation

Larger Volume
Lower Threshold

 detectors:
- CDMS
- Super-K
- AMANDA
- Pierre-Auger
- Hyper-K
- ICECUBE
- EUSO
- OWL

applications:
- Neutrino
- Cosmic Ray
- Dark Matter
- Zeplin

log-log plot:
- Detector Volume (Ton) vs. Energy Threshold (eV)
Talk Outline

- Astro-Physics
 - Cosmology
 - High-energy Particle Astro-physics

- Experiments
 - Ongoing
 - Future

- Photo-detectors
 - Demands
 - New Detectors on Horizon
 - Dream Detectors
Photon Detector

- LSST
- SDSS
- CCD
- PMT
- EUSO
- OWL
- γ Wide FOV
- Hyper-K
- Auger-FD
- Super-K
- Auger-SD
- AMS
- VERITAS

More Pixels
Better Sensitivity
Demands on Photon Detectors

- **Giga-Pixel CCD**
 - Sky Survey

- **Mega-Pixel (1-5mm), Photon Counting**
 - EUSO/OWL, Wide-FOV γ-ray Telescope

- **Large Area (>50cm), Photon Counting**
 - Neutrino, Proton decay

- **Time-resolving Imaging**
 - Transient Phenomena

- **Low Costs!**
Demands on Photon Detectors

- Giga-Pixel CCD
 - Sky Survey

- Mega-Pixel (1-5mm), Photon Counting
 - EUSO/OWL, Wide-FOV γ-ray Telescope

- Large Area (>50cm), Photon Counting
 - Neutrino, Proton decay

- Time-resolving Imaging
 - Transient Phenomena

- Low Costs!
New Detectors on Horizon

- **Vacuum**
 - Multi-Pixel HPD: DEP
 - Flat Panel PMT: Hamamatsu, Burle
 - Silicon MCP: Nano-science
 - New Photo Cathode

- **Solid State**
 - Silicon PMT: Russia
 - STJ: ESTEC
 - TES: Stanford
DEP Hybrid Photodiode (HPD)

- Baseline design for LHC-b RICH
- 8cm diameter
- 61 Pixel, (5mm view)
Energy Resolution

\[\frac{\sigma}{E} = \sqrt{\frac{\text{ENF} \cdot \text{QE} \cdot C_{ol}(N_\gamma + N_{BG}) + (\text{ENC}/G)^2}{\text{QE} \cdot C_{ol} \cdot N_\gamma}} \]

\[\approx \sqrt{\frac{\text{ENF}}{\text{QE} \cdot C_{ol} \cdot N_\gamma}} \]

- \(\text{QE}\) as high as possible. \((> 30\%)\)
- \(C_{ol}\) as close as 100\% \((> 0.9)\)
- \(\text{ENF}\) as close as 1.0 \((< 1.2)\)
- \(G\) \(\gg\) \(\text{ENC}\) (~1000e\(^{-}\)) \((\gg > 10^4)\)
- \(N_{BG}\) \(<<\) \(N_\gamma\) \((<< 1)\)
Energy Resolution

![Energy Resolution Graph]

- **Energy Resolution** vs. **No. of Photons**
- Lines represent different detectors:
 - **APD**
 - **HPD**
 - **PMT**

Poisson Limit and **Photo Diode** are also indicated on the graph.
Hamamatsu Flat Panel PMT

64 Pixels

Location of Anode (Pixel Number)

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>2.5</td>
<td>100</td>
<td>3.4</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
<td>0.7</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(unit: %)

Light Source: W Lamp
Wavelength: 400nm
(5x5 mm Mask is used.)
Applied Voltage: 1000V
Burle Flat PMT

- 2 inch Square
- Ceramic Case
- Dual MCP-PMT
- 4 anodes, uniformity < 2:1
- Maximum Gain ~ 1×10^6

85001 Single Electron Spectrum

The BURLE 85001 Low Profile PMT is significantly shorter than a conventional glass envelope PMT

by Paul Hink
Silicon MCP

• ~7µm pores
• >75% open area
• Diamond coated

Gain > 1,000

By O. Siegmund, U.C. Berkeley
Semiconductor Photo-cathode

by Hamamatsu

Aiming at even longer wavelength!
Silicon Photomultiplier

by P. Buzhan, B. Dolgoshein et. al.

Gain~10^6

ENF=1.0

DQE~10%
Superconducting Tunneling Junctions (STJ)

- Developed by ESTEC, ESA
- Detect Photon by Photon:
 - Energy < 0.1 eV
 - Time < 1 nsec
 - Position < 10 μm
Transition Edge Sensor (TES)

The Astrophysical Journal, 563: 221È228, 2001 December 10
R. Romani ,et al.

20 x 20 µm²

TES Array
Tc ~ 70 mK

Dilution refrigerator

2.7m Harlan Smith

400µm–200µm Taper
GRIN & spherical lens

3 m length cold loop

200 µm UV fiber optic
Crab Pulsar observed by TES
Detect Photon by Photon:

- Energy < 0.1 eV
- Time < 1 nsec
- Position < 10 μm

Ultimate Photon Detector!
Dream Team for Astro-Physics

- **CCD:** $\sim 10\,\mu m$ 1G pixels
- **STJ:** $\sim 20\,\mu m$ 1M pixels
- **HAPD:** $\sim 1\,mm$ 1K pixels
Multi-pixel Hybrid APD

- Glass Window (1mm\text{t})
- InGaN Photo Cathode
- Ceramic Case
- APD Array (32 x 32 = 1024 Pixel)
- Readout Electronics

- 1.4mm Pixel Size, 1.5mm Pitch
- 32 x 32 = 1,024 Pixels
- QE ~ 50\% at 350 ~ 400nm
- Gain ~10^5
Katsushi’s Dream Telescope

Ground & Space-based 2π observatory:

- 20m diameter mirror
- 30° FOV, f/0.8
- 0.1arcsec pixel size
- 1Tera pixels
- Photon counting
- 1nsec time resolution
- 0.01eV energy resolution
Concluding Remarks

- Where did we come from? Where are we going?
- The answer is still hidden in the dark side of the Universe which only more advanced photo-detectors can see.
- Time is now to develop dream detectors!
Can “your photo-detector” see the dark side of this picture?