Quarkonia Results from PHENIX
Mike Leitch – LANL - leitch@bnl.gov
UCLA Heavy-Quark Workshop – 23 Jan 2009

- Quarkonia & Deconfinement
- PHENIX A+A Results
- Cold Nuclear Matter (CNM)
- Production Issues
- Sequential Screening
- Regeneration
- Flow, \(<p_T^2> \) & high-\(p_T \)
- Heavier Quarkonia

PHENIX - Approx. #’s J/\(\psi \) vs Year

1/23/2009
Quarkonia & Deconfinement

For the hot-dense medium (QGP) created in A+A collisions at RHIC:
• Large quark energy loss in the medium implies high densities
• Flow scales with number of quarks
• Is there deconfinement? → look for Quarkonia screening

Debye screening predicted to destroy J/ψ’s in a QGP with other states “melting” at different temperatures due to different sizes or binding energies.

RHIC: T/T_c ~ 1.9 or higher

Different lattice calculations do not agree on whether the J/ψ is screened or not - measurements will have to tell!

Satz, hep-ph/0512217

<table>
<thead>
<tr>
<th>state</th>
<th>J/ψ(1S)</th>
<th>χ_c(1P)</th>
<th>ψ′(2S)</th>
<th>Y(1S)</th>
<th>χ_b(1P)</th>
<th>Y(2S)</th>
<th>χ_b(2P)</th>
<th>Y(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d/T_c</td>
<td>2.10</td>
<td>1.16</td>
<td>1.12</td>
<td>> 4.0</td>
<td>1.76</td>
<td>1.60</td>
<td>1.19</td>
<td>1.17</td>
</tr>
</tbody>
</table>
PHENIX Au+Au data shows suppression at mid-rapidity about the same as seen at the SPS at lower energy
• but stronger suppression at forward rapidity.
• Forward/Mid R_{AA} ratio looks flat above a centrality with $N_{\text{part}} = 100$

Several scenarios may contribute:
• Cold nuclear matter (CNM) effects
 • in any case are always present
• Sequential suppression
 • QGP screening only of χ_c & ψ'-removing their feed-down contribution to J/ψ at both SPS & RHIC
• Regeneration models
 • give enhancement that compensates for screening
What CNM effects are important?
(CNM = Cold Nuclear Matter)

Traditional shadowing from fits to DIS or from coherence models

Absorption (or dissociation) of $c\bar{c}$ into two D mesons by nucleus or co-movers

Gluon saturation from non-linear gluon interactions for the high density at small x; amplified in a nucleus.

Energy loss of incident gluon shifts effective x_F and produces nuclear suppression which increases with x_F
New Analysis of Run3 d+Au with new 2005 p+p baseline

PRC 77, 024912 (2008)

Compared to E866/NuSea p+A results & lower-energy NA3 at CERN

Not universal vs x_2 as expected for shadowing, but closer to scaling with x_F, why?
- initial-state gluon energy loss?
- gluon saturation?
Present CNM Constraints on A+A data

CNM effects (EKS shadowing + dissociation from fits to d+Au data, with R. Vogt calculations) give large fraction of observed Au+Au suppression, especially at mid-rapidity.

more accurate d+Au constraint badly needed
Mistake in extracting σ_{breakup} vs. rapidity

- The data points, statistical and systematic uncertainties in the figure are correct.
- The one standard deviation uncertainty band for the breakup cross section contains a mistake.
- The band does not account for all the systematic uncertainties, as intended in the paper.
- Correctly including the systematic uncertainties will make the band larger.
- We expect to release corrected values soon.

\[
\tilde{\chi}^2(\epsilon_b, \epsilon_c, p) = \left[\sum_{i=1}^{n} \frac{(y_i + \epsilon_b \sigma_y + \epsilon_c y_i \sigma_y - \mu_i(p))^2}{\bar{\sigma}_i^2} \right] + \epsilon_b^2 + \epsilon_c^2
\]
Run-6 & run-8 p+p 200 GeV data.

- Factor of **three** more data in run-6 compared to the previous run-5 p+p baseline

Run-8 d+Au 200 GeV data

- Factor of **thirty** more data in run-8 compared to the previous run-3 d+Au
- Constrain the CNM effects present in HI collisions to make un-ambiguous statements about anomalous suppression.
- The statistics are there! **Main Focus** is on reducing systematics.

\[J/\psi \rightarrow \mu^+\mu^- \]

\[J/\psi \rightarrow e^+e^- \]
Quarkonia Production is Also an Issue
Let's look at p+p Collisions
Quarkonia Production is Also an Issue

- gluon fusion dominates
- but is $c\bar{c}$ produced in a color-singlet or -octet state?
 - important for CNM effects
- difficult to get both absolute cross section & polarization correct
 - singlet models under-predict cross sections
 - octet models get cross section but predict transverse polarization at large p_T
 - but small longitudinal polarization was seen ($E866$, CDF)
 - recently a new singlet model seems to get both correct ($Haberzettl, Lansberg, PRL 100, 032006 (2008)$)
- Latest PHENIX data starting to define rapidity dependence
\[\lambda = +1 \text{ (transverse)} \]
\[= -1 \text{ (longitudinal)} \]

- Octet models get correct cross section size (unlike singlet), but...
- CDF and Fermilab E866 J/\(\psi \) data show little polarization & disagree with NRQCD predictions

And \(\Upsilon \) maximally polarized for (2S+3S), but NOT (1S)
* Is feed-down washing out polarization? (~40% of 1S from feed-down)
(\(\psi' \) polarization measurement would be helpful here but is very experimentally challenging)
J/ψ polarization at mid-rapidity in PHENIX vs p_T

Probably most interesting at the highest p_T (2-5 GeV/c) since this is where theoretical models predict non-zero polarization.
J/ψ Polarization at forward rapidity in PHENIX

Forward rapidity measurement with dimuons gives zero polarization with large uncertainties, and presently is unable to study vs p_T.

$\begin{align*}
\lambda &= -1 \text{ longitudinal} \\
\lambda &= +1 \text{ transverse}
\end{align*}$
J/ψ polarization at in PHENIX vs p_T

- Small polarization at mid-rapidity seems consistent with s-channel cut theory
- but at forward rapidity data smaller than prediction

(Singlet model with s-channel cut; does not include effect of feeddown from χ_c & ψ')
Complications due to substantial feed-down from higher mass resonances (ψ', χ_c)

J/ψ from ψ'

$8.6 \pm 2.5\%$

Also measured $B \rightarrow J/\psi - 4^{+} \pm 3^{-}_{2}\%$

Nuclear dependence of (parent) resonance, e.g. χ_c is probably different than that of the J/ψ

Also measured $B \rightarrow J/\psi - 4^{+} \pm 3^{-}_{2}\%$

(but will be strongest at high-p_T)
New invariant yield measurement from larger luminosity Run-6 agrees with published results!

\[\frac{d\sigma_{J/\psi}}{dy} \bigg|_{|y|<0.35} = 45.3 \pm 1.0 (\text{stat}) \pm 5.4 (\text{sys}) \pm 4.5 (\text{global}) \text{ nb} \]

\[B_{J/\psi \to e^+ e^-} \sigma_{J/\psi} \bigg|_{|y|<0.35} (p_T < 7 \text{ GeV/c}) = 41.0 \pm 0.9 (\text{stat}) \pm 4.9 (\text{sys}) \text{ nb} \]
ψ' vs p_T in $p+p$ collisions at mid-rapidity

Within uncertainties $\psi'/(J/\psi)$ agrees with HERA-B & E789 measurements
- with $(BR^*\psi')/(BR^*J/\psi) = 1.9\%$

$BR^*\sigma_{\psi'}(p_T < 7\text{ GeV/c, } |y|<0.35) = 0.88 \pm 0.30/-0.20 \pm 0.12 \text{ nb}$

$<0.38 \text{ 90\% CL}$
And Now back to A+A and the QGP - consider two scenarios

\[\chi_0 (0.56 \text{ fm}) \]
\[\psi (0.56 \text{ fm}) \]
\[\lambda_0 \text{ Debye length from lattice QCD} \]
\[J/\psi (0.29 \text{ fm}) \]
\[\rho (0.13 \text{ fm}) \]

\[0 \]
\[0.1 \]
\[0.2 \]
\[0.3 \]
\[0.4 \]
\[0.5 \]
\[0.6 \]

\[1 \]
\[1.5 \]
\[2 \]
\[2.5 \]
\[3 \]
\[3.5 \]
\[4 \]
\[4.5 \]

\(T/T_c \)
QGP Effects on Quarkonia
Sequential Screening and Gluon Saturation

Some recent lattice calculations suggest J/ψ not screened at all

- suppression then comes only via feed-down from screened χ_c & ψ'

- then the situation would be the same at lower energies (NA38/50/60) as for RHIC mid-rapidity

- and the stronger suppression at forward rapidity at RHIC could come from, e.g., gluon saturation

- But can this picture explain flat forward/mid-rapidity R_{AA} super-ratio?
QGP effects on Quarkonia
Regeneration - Compensating for Screening

- larger gluon density at RHIC expected to give stronger suppression than SPS
- but larger charm production at RHIC gives larger regeneration
- forward rapidity lower than mid due to smaller open-charm density there
- very sensitive to poorly known open-charm cross sections
 - Vertex upgrades will help here

- expect inherited flow from open charm
- regeneration would be HUGE at the LHC!
- can the two compensating components (screening & regeneration) which may have diff. centrality dependences, give a flat forward/mid-rapidity R_{AA}?
QGP effects on Quarkonia - p_T Broadening

- AA data same as pp & relatively flat with centrality
- CNM effects broaden p_T
 - initial-state mult. scatt. for both gluons
- but regeneration should narrow p_T (compensates for above?)
 - square of small-p_T peaked open-charm cross section
How does the QGP affect Quarkonia? J/ψ flow

J/ψ's from regeneration should inherit the large charm-quark elliptic flow

- also need to measure open-charm flow at forward rapidity

This is a first measurement, at both mid and forward rapidity.

Very limited statistics so that no strong conclusion can be drawn.

Need more data, and detector upgrades.
Reaching Higher p_T for J/ψ - probing for the “hot wind”?

New PHENIX R_{CuCu} out to $p_T = 9$ GeV/c !
• shows large suppression that looks roughly constant up to high p_T
• STAR points with their huge uncertainties were misleading

AdS/CFT (“hot wind”) - more suppression at high p_T:
 Liu, Rajagopal, Wiedemann
 PRL 98, 182301(2007)

Regeneration (2-component):
 Zhao, Rapp
 hep-ph/07122407
 & private communication

Equilibrating Parton Plasma:
 Xu, Kharzeev, Satz, Wang,
 hep-ph/9511331

Gluonic dissoc. & flow:
 Patra, Menon, nucl-th/0503034

Cronin - less suppression at higher p_T:
 use d+Au data as a guide
PHENIX & STAR Preliminary \(\Upsilon \) p+p Cross Sections

Graphs:
- **PHENIX Preliminary p+p QM05 \(\Upsilon \rightarrow \mu\mu \)**
- **STAR Preliminary d+Au \(\mu^+\mu^- \)**
- **PHENIX Preliminary \(\Upsilon \rightarrow \mu\mu \)**

Images:
- **1st Upsilons at RHIC**
- **Upsilons from Run8 d+Au? (online spectrum)**

Text:
- **PHENIX & STAR Preliminary \(\Upsilon \) p+p Cross Sections**
- **1st Upsilons at RHIC**
- **Upsilons from Run8 d+Au? (online spectrum)**

Date:
1/23/2009
Pushing J/ψ to higher-p_T:

- PHENIX Preliminary
- Centrality 0-94%
- 200 GeV Cu+Cu J/ψ
- Run 5+6 pp ref
- STAR Cu+Cu(90-60)%pp

Better CNM baseline coming from Run8!

Sequential screening & gluon saturation:

flow from regeneration is difficult to see:
Backup Slides
How does the QGP affect Quarkonia?

CNM Effects

CNM effects (EKS shadowing + dissociation) give large fraction of observed AuAu suppression, especially at mid-rapidity.

Normal CNM descriptions give similar AuAu suppression at mid vs forward rapidity:
- but if peaking in “anti-shadowing” region were flat instead then one would get larger suppression for forward rapidity as has been observed in AuAu data.
- could come from gluon saturation or from a shadowing prescription that has no anti-shadowing.

In any case more accurate dAu data is sorely needed.
Nuclear Dependence Nomenclature – Ratio \(R_{dAu}, R_{AA} \) and Alpha (\(\alpha \))

\[R_{dAu} = \alpha = 1 \] if every N-N collision in a Nucleus contributes as if it were in a free nucleon

\[
R_{dAu} = \frac{d\sigma^{dAu}/dy}{2 \times 197 \cdot (d\sigma^{pp}/dy)}
\]

\[
= \frac{dN^{dAu}/dy}{\langle n_{\text{coll}}^{dAu} \rangle dN^{pp}/dy}
\]

\(<n_{\text{coll}}^{dAu}> \) from Glauber model calc. – can also be used for centrality bins

Where \(dN^{dAu}/dy \) is an invariant yield w/o absolute normalization factors that would be needed for a cross section (lower systematical uncertainties)

Alternatively, a power law with \(\alpha \) - especially useful when comparing expts that used different nuclear targets

\[
\sigma_{pA} = \sigma_{pp} A^{\alpha}
\]

\[
\alpha = 1 + \ln\left(R_{pA} \right)/\ln(A)
\]
Transverse Momentum Broadening
Another Cold Nuclear Matter Effect

Initial-state gluon multiple scattering causes p_T broadening (or Cronin effect)

$$\sigma_A = \sigma_N A^\alpha$$

PHENIX 200 GeV dAu shows some p_T broadening, but may be flatter than at lower energy ($\sqrt{s}=39$ GeV in E866/NuSea)
Recent Quarkonia Yields in PHENIX & STAR

<table>
<thead>
<tr>
<th>Run</th>
<th>species</th>
<th>Expt.</th>
<th>Lumi</th>
<th>p_T</th>
<th>J/ψ ee</th>
<th>J/ψ μμ</th>
<th>Ψ ee</th>
<th>Ψ μμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>pp</td>
<td>PHENIX</td>
<td>3.8 pb⁻¹</td>
<td></td>
<td>400</td>
<td>1250</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAR</td>
<td>3 pb⁻¹</td>
<td>>2.5</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CuCu</td>
<td>PHENIX</td>
<td>3 nb⁻¹</td>
<td></td>
<td>2k</td>
<td>9k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAR</td>
<td>0.9 nb⁻¹</td>
<td>> 3.75</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>pp</td>
<td>PHENIX</td>
<td>10.7 pb⁻¹</td>
<td></td>
<td>1.5k</td>
<td>22k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAR</td>
<td>0.4 pb⁻¹</td>
<td>~150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 pb⁻¹</td>
<td>> 4</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 pb⁻¹</td>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>AuAu</td>
<td>PHENIX</td>
<td>0.81 nb⁻¹</td>
<td></td>
<td>3.7k</td>
<td>16k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAR</td>
<td>0.3 nb⁻¹</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>dAu</td>
<td>PHENIX</td>
<td>80 nb⁻¹</td>
<td></td>
<td>6k</td>
<td>73k</td>
<td>~200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pp</td>
<td></td>
<td>5.2 pb⁻¹</td>
<td></td>
<td>13k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reaching Higher p_T for J/ψ - probing for the “hot wind?”

Approximate ratios by combining PHENIX & STAR data reach higher p_T & appear to be consistent with $R_{AA}=0.9\pm0.2$ at high p_T
• but also consistent with lower p_T data at $R_{AA} = 0.52$
• & regeneration models
• & rough projection from d+Au
• but not with gluon dissociation + flow (Patra, nucl-th/0503034 2005)

Most models expect a decrease in R_{AA} at high p_T:
AdS/CFT (“hot wind”):
H. Liu, K. Rajagopal and U.A. Wiedemann, PRL 98, 182301(2007) and hep-ph/0607062
Regeneration (2-component):
X. Zhao and R. Rapp, hep-ph/07122407
Private communication
EPS08 (Strong) Shadowing
Eskola, Paukkunen, Salgado, hep-ph 0802.0139v1

Fit includes RHIC (Brahms) forward hadron data (as well as the usual DIS and DY data)
R_{AuAu} vs R_{CuCu}

$CuCu$ provides more accurate R_{AA} at smaller N_{part}, but within errors confirms the trends seen in $AuAu$ in that region.

$R_{AA}(y\sim1.7)/R_{AA}(y\sim0)$
New results from Run7 AuAu data

Preliminary analysis of new Run7 AuAu forward rapidity (dimuon) J/ψ data (black points) is consistent with published results (blue points) from Run4
Ratios vs p_T for d+Au and Au+Au