Strange Particle Production and Elliptic Flow from CERES

Jovan Milošević for the CERES/NA45 Collaboration

Physikalisches Institut, Universität Heidelberg, Germany
Contents

- Definition of elliptic flow and physics motivation
- Description of CERES/NA45 experimental setup and data used
- Elliptic flow of π^\pm, Λ and K^0_S
- Strangeness production (K^0_S)
- The ϕ meson measured in e^+e^- and K^+K^- channel
- Conclusions
Definition of elliptic flow and physics motivation

- Interactions occur frequently enough → system equilibrates
- Hydrodynamics: $\partial_\mu T^{\mu\nu} = 0$ and $\partial_\mu j_\mu^{\nu} = 0$, with $T^{\mu\nu} = (\epsilon + p)u_\mu u_\nu = pg^{\mu\nu}$ and $j_\mu^{\nu} = n_i u_\mu$. Equation Of State (EOS): $p = p(\epsilon, n_1, \ldots, n_N)$

- The initial compression → pressure (p) → collective flow
- Non-central collisions → $\nabla p_x > \nabla p_y$ → anisotropic flow
- Fourier decomposition:

 $$dN/d\phi = N_0 \{1 + \sum_{n=0}^{+\infty} 2v_n \cos(n\phi)\}$$

- Quadrupole component $v_2 = \langle \cos(2\phi) \rangle$ is called elliptic flow

- Comparing v_2 of protons, Λ, K^0_S and π^\pm we could test mass ordering effect
- Testing the flow measurements of different particle species against different scaling scenarios may yield information about the origin of flow
CERES/NA45 experimental setup in year 2000

Pb+Au@CERN SPS ($\sqrt{s_{NN}} = 17.2$ GeV)

Used statistics: 30M events

$2.05 \leq \eta \leq 2.70$, p_T up to 4 GeV/c

full azimuthal acceptance
Centrality determination

- 3 triggers contribute with 0.54% (minimum bias), 8.25% (semicentral) and 91.21% (central) of all events.

- Due to the small statistics, flow analysis of strange particles is done in 2 centrality bins with weighted mean centrality $\langle \sigma / \sigma_{geo} \rangle$ of 3.5% and 10.5%. In the case of pions 6 centrality bins are used.
Reaction plane determination

- The orientation of the reaction plane is not known \textit{a priori} and it is measured from the emitted particles using the second Fourier harmonic v_2

$$\Phi = \frac{1}{2} \arctan \left(\frac{\sum_i p_{T,i} \sin(2\phi_i)}{\sum_i p_{T,i} \cos(2\phi_i)} \right)$$

- No detector is perfect. If one wants to measure anisotropies on the level of few $\%$, the reaction plane distribution $dN/d\Phi$ has to be completely flat

Distribution of TPC tracks

Distribution of reaction plane angles
Correction factors in the elliptic flow analysis

- Due to the finite resolution of the measured reaction plane, observed Fourier coefficient v'_2 has to be corrected for the resolution:

$$v_2 = v'_2 / \sqrt{2 \langle \cos[2(\Phi_a - \Phi_b)] \rangle}$$

- Correction factor grows with centrality expressed via TPC multiplicity

- Due to the double multiplicity, correction factors in the 2 subevent method are $\approx \sqrt{2}$ times smaller than in the case of the slice method and roughly equal with those from Λ and K^0_S analysis
Dependence of $v_2(\pi^{\pm})$ on p_T

- Bose-Einstein quantum correlations produce short range azimuthal correlations which show up as apparent azimuthal anisotropy (HBT effect)
- The peculiar behavior of the pion elliptic flow at low-p_T is produced by HBT effect. It disappears once HBT is properly subtracted
- v_2 grows with p_T and saturates at $p_T \geq 2$ GeV/c with the magnitude of $\approx 4\%$
Centrality dependence of $v_2(\pi^\pm)$

- π^\pm elliptic flow decreases with centrality
- The HBT effect, becomes more pronounced going from semicentral to central collisions

![Graph showing $v_2(\pi^\pm)$ vs. centrality with and without HBT correction](image)

- 0.0<p_T<4.2 GeV/c
- 2.05<η<2.75

SQM 2006, UCLA, Los Angeles, March 27th, 2006

J. Milošević
\(\Lambda \) signal: cuts applied to reduce the background

- Reconstructed \(\Lambda \rightarrow p + \pi^- \) \((BR = 63.9\%, cT = 7.89 \text{ cm})\) using TPC tracks which satisfy:
 - TPC dE/dx cut \((\pm 1.5\sigma \text{ for } \pi^\pm, +1\sigma \text{ for } p)\)
 - Number of hits per track, depending on \(\theta \), is between 8 and 18
 - \(2.05 \leq \eta \leq 2.70, \quad p_T \geq 0.05 \text{ GeV/c} \)
 - TPC candidate tracks for \(\Lambda \) daughters should not match SDD tracks within \(3\sigma \) due to late decay
 - Armenteros-Podolanski cut:
 \[q_T \leq 0.125 \text{ and } 0 \leq \alpha \leq 0.65 \] to suppress \(K^0 \)
 - Pairs of candidates should survive \(p_T \)-dependent opening angle cuts
 - Combinatorial background is calculated by rotating positive track by a random angle around the beam axis

With these cuts optimal values for \(\frac{S}{B} \approx 0.04 \) and \(\frac{S}{\sqrt{B}} \approx 500 \) were obtained
Reconstructed $K_S^0 \rightarrow \pi^+ + \pi^-$ ($BR = 68.95\%$, $c\tau = 2.6739$ cm) using TPC tracks which satisfy:

- TPC dE/dx cut ($\pm 2.0\sigma$ for π^\pm)
- Number of hits per track, depending on θ, is between 8 and 18
- $2.05 \leq \eta \leq 2.70$, $p_T \geq 0.05$ GeV/c

- Armenteros-Podolanski cut: $q_T \geq 0.12$ to suppress Λ
- χ^2 probability value for a linear fit applied to 3 points has to be bigger than 0.01
- the radial distance between the back extrapolated $\vec{p}_{K_S^0}$ and the primary vertex has to be smaller than 0.02 cm
- the opening angle $\theta_{\pi^+\pi^-} > 0.05$ rad
- the value of the z-coordinate of the secondary vertex has to be bigger than 1.0 cm

With these cuts optimal values for $\frac{S}{B} \approx 0.92$ and $\frac{S}{\sqrt{B}} \approx 500$ were obtained.

SQM 2006, UCLA, Los Angeles, March 27th, 2006

J. Milošević
\(\alpha = (q^+_L - q^-_L)/(q^+_L + q^-_L) \) where \(q^\pm_L \) are the longitudinal momentum components of \(p^\pm \) calculated with respect to the \(\vec{p}_{\Lambda(K^0_S)} = \vec{p}^+_L + \vec{p}^-_L \). The \(q_T \) variable is defined as the momentum component of \(\vec{p}^+_L \) in the transverse plane perpendicular to the \(\vec{p}_{\Lambda(K^0_S)} \).
Evaluation of Λ (K_S^0) yields vs ϕ angle

- In each $y - p_T$ bin we reconstructed Λ (K_S^0) in 6 ϕ bins
- Uncorrected elliptic flow values v'_2 were obtained by fitting $dN_{\Lambda(K_S^0)}/d\phi$ distributions with $A(1 + 2v'_2 \cos(2\phi))$ flow function

Λ:
- $1.61 < y < 1.69$
- $0.68 < p_T < 0.8$ GeV/c
- $15^\circ < \phi < 30^\circ$

K_S^0:
- $1.62 < y < 1.69$
- $0.68 < p_T < 0.8$ GeV/c
- $15^\circ < \phi < 30^\circ$

Λ:
- $p_T \approx 2.7$ GeV/c
- K_S^0:
- $p_T \approx 2.1$ GeV/c
Elliptic flow vs centrality

- v_2 decreases with centrality measured via TPC multiplicity

- $2.05 < y < 2.7$
- into exp. acceptance

Graph:
- $\frac{\sigma}{\sigma_{geo}}$ values: 31.7, 24.3, 17.9, 12.4, 7.9, 4.5, 2.0, 0.5, 0.05, 0.01
- TPC multiplicity values: 80 to 240
\(\Lambda (K_S^0) \) elliptic flow \(v_2 \) vs \(p_T \) in non-central collisions

For both kind of strange particles, \(v_2 \) grows with \(p_T \) in non-central collisions.
Comparison with RHIC and NA49 results

- Very good agreement for Λ flow magnitude between NA49 and CERES data, measured at the same beam energy.

- v_2 values at the RHIC, after rescaling to the centrality used in the CERES experiment, are 10 – 15% higher due to the higher beam energy at the RHIC as compared to the SPS.

![Graph 1](image1.png)

![Graph 2](image2.png)
Comparison with hydrodynamical calculations

- **Hydrodynamical calculation with higher freeze-out temperature:** $T_f = 160$ MeV is very close to CERES results on both charged pion, and strange particle elliptic flow, while $T_f = 120$ MeV overpredicts data.

Hydrodynamical calculation (1-st order phase transition, $T_c = 165$ MeV) by: P. Huovinen
Comparison between v_2 of protons, Λ, K_S^0 and π^\pm

Similarly as in the case of the STAR results, a mass ordering effect was observed: $v_2(\Lambda) < v_2(K_S^0) < v_2(\pi^\pm)$ at small p_T, while at high p_T it is opposite.

Testing of the two scaling scenarios in CERES data

- For three analyzed kind of particles, the NCQ scaling works approximately for $p_T / n_q \geq 0.5$ GeV/c and fails for lower p_T / n_q for low Λ and pions.

- The transverse rapidity scaling is fulfilled reasonably well over the whole y_T range, where $y_T^{fs} = k_m y_T^2 m$ with $y_T = \sinh^{-1}(p_T / m)$.

![NCQ scaling](image1)

![y_T^{fs} scaling](image2)

SQM 2006, UCLA, Los Angeles, March 27th, 2006

J. Milošević
Two K^0_S analyses from the CERES data

- Two independent K^0_S analyses from the CERES data were done based on
 - reconstruction of K^0_S without PID and secondary vertex reconstruction (S. Radomski)
 - reconstruction of K^0_S without PID but with secondary vertex reconstruction (W. Ludolphs)

![Graph 1](image1)

- Counts ($a.u.$) vs. invariant mass (GeV/c2)

 - $2 < y < 2.6$
 - $p_T < 1.8$ GeV/c

![Graph 2](image2)

- Counts vs. $m_{\pi\pi}$ [GeV/c2]

 - $0.2 < p_T < 0.4$ GeV/c
 - $2.2 < y < 2.4$
Rapidity and p_T spectrum of K^0_S

S. Radomski, Doctoral Thesis 2006, preliminary

CERES Preliminary - PbAu 7%

\[
\frac{dN}{dy}_{\text{ycm}=0} = 21.2 \pm 0.9_{\text{stat}} ^{+1.7}_{-1.7}_{\text{syst}}
\]

\[
\sigma = 1.31 \pm 0.20
\]

CERES preliminary

\[
Y = 2.15 - 2.30
\]

\[
\frac{dN}{dY} = 19.0 \pm 0.4
\]

\[
\frac{dN}{dY_{\text{fit}}} = 19.0 \pm 0.4
\]

\[
T = 218 \pm 3 \text{ MeV}
\]
dN/dy of K_S^0 compared to other experiments

- Within CERES acceptance the results agree with NA57 data
- Disagreement on the fits
- A rather good agreement between NA49 analysis of charged kaons and CERES K_S^0 results in shape and yield. Difference in the yield is only 5%
- NA49 analysis of K_S^0 shows a similar shape as one from CERES. There is a relatively good agreement in the yield

A good agreement between a fit on the NA49 data and CERES results

Data are fitted via

$$\frac{d^2 N}{p_T dp_T dy} = \frac{dN/dy}{T(T+m)} \exp\left(-\frac{\sqrt{m^2 + p_T^2} - m}{T}\right), \quad m = m_{K_S^0}$$

Two independent CERES analyses agree rather well

CERES results: W. Ludolphs, Doctoral Thesis 2006, published
Within CERES acceptance all four measurements are compatible
A good agreement between extracted temperatures from NA49 and CERES data
ϕ meson reconstruction

- ϕ meson simultaneously reconstructed in $e^+ e^-$ and $K^+ K^-$ channel

$$2.0 < y_\phi < 2.4 \quad p_T^\phi > 0.75 \text{ GeV/c}$$

Pb-Au 158 AGeV

- $p_t > 200$ MeV/c
- $\Theta_{ee} > 35$ mrad
- $2.1 < \eta < 2.65$

$\phi \rightarrow e^+ e^-$

- Solid line: hadron decay cocktail
- Dashed line: in medium spread p width + the dilepton yield from the QGP phase
m_t and p_T spectra of ϕ meson

- $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$ agree within errors. Enhancement by a factor larger than 1.6 at the 95% C.L. can be excluded.

- CERES results in both decay channels are consistent with the results from the NA49 experiment, and disagree with the NA50 result.

Conclusions

- The elliptic flow is measured for π^\pm, K^0_S, protons and Λ in CERES at \(\sqrt{s_{NN}} = 17.2 \) GeV
- Good agreement with NA49. RHIC data only 15-20% above present SPS data
- Hydro-calculation with higher freeze-out temperature: $T_f = 160$ MeV is very close to CERES data, while $T_f = 120$ MeV overpredicts data
- Mass ordering effect is observed: $v_2(\Lambda) < v_2(K^0_S) < v_2(\pi^\pm)$ at small p_T, while at high p_T it is opposite
- v_2 scales with number of constituent quarks for high p_T ($p_T/n_q \geq 0.5$ GeV/c)
- The transverse rapidity scaling is fulfilled reasonably well over the whole y_T^{fs} range
- dN/dy and p_T spectrum of K^0_S are measured in CERES. Good agreement between two CERES analyses and NA49. Na57 data agrees only within CERES acceptance
- ϕ meson simultaneously reconstructed in e^+e^- and K^+K^- channel
- $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$ agree within errors. Enhancement by a factor larger then 1.6 at the 95% C.L. can be excluded. Results agree with NA49, but disagree with NA50 data
CERES/NA45 Collaboration

P. Rehak
BNL, Upton, USA

L. Musa, J. Schukraft
CERN, Geneva, Switzerland

A. Drees
SUNY Stony Brook, USA

G. Agakichiev, D. Antonczyk, A. Andronic,
P. Braun-Munzinger, O. Busch, C. Garabatos,
G. Hering, J. Holeczek, M. Kalisky, A. Maas,
A. Marín, D. Miśkowiec, S. Radomski, J. Rak,
H. Sako, S. Sedykh, G. Tsiledakis
GSI, Darmstadt, Germany

H. Appelshäuser, S. Kniege, M. Ploskon
IKF, Frankfurt, Germany

V. Belaga, K. Fomenko, Y. Panebratsev,
O. Petchenova, S. Shimansky, V. Yurevich
JINR, Dubna, Russia

J. P. Wurm
MPI, Heidelberg, Germany

D. Adamová, V. Kushpil, M. Šumbera
NPI/ASCR, Řež, Czech Republic

J. Bielčíková, R. Campagnolo, S. Damjanović,
T. Dietel, L. Dietrich, S. I. Esumi, K. Filimonov,
P. Glässel, G. Krobath, W. Ludolfs, J. Milošević,
R. Ortega, V. Petráček, W. Schmitz, W. Seipp,
R. Soualah, J. Stachel, H. Tilsner, T. Wienold,
B. Windelband, S. Yurevich
University Heidelberg, Germany

J. P. Wessels
University Münster, Germany

A. Cherlin, Z. Fraenkel, I. Ravinovich, I. Tserruya
Weizmann Institute, Rehovot, Israel

Thanks to P. Huovinen
for hydrodynamics calculations
Flattening of reaction plane

- For an ideal detector $dN/d\Phi$ is flat
- In reality, different detector effects (efficiency in ϕ smaller than 100%, geometrical offset between position of the beam and the center of the detector in the $x-y$ plane) make it nonflat
- An example of flattening of the calculated reaction plane (Φ):

![Graph showing flattening of reaction plane](image)
Centrality dependence of π elliptic flow

- π elliptic flow decreases with centrality from 4.0% in semicentral to 1.2% in very central collisions

![Graph showing elliptic flow v_2 vs. centrality (\(\sigma/\sigma_{geo}\)) for $0.0<p_T<4.2$ GeV/c and $2.05<\eta<2.75$. The graph includes data points from 2005 and 2001 analyses.]
$v_2(\pi^\pm)$ vs p_T for different centralities

- Threshold for the saturation moves to smaller p_T going from semicentral to central collisions
- The maximal v_2 values goes from 8% in semicentral to 3% in central collisions
Suppression of the background via TPC dE/dx

- Protons: positive particles with $dE/dx \leq 1.1 \, dE/dx(p, |\vec{p}|) (\equiv +1\sigma)$ using Bethe-Bloch equation

- π^-: negative particles with $0.85 \, dE/dx(\pi^-, |\vec{p}|) \leq dE/dx \leq 1.15 \, dE/dx(\pi^-, |\vec{p}|) (\equiv \pm 1.5\sigma)$

![Candidates for Λ daughthers](image)
Distributions of accepted Λs and K_S^0
Characteristics of Λ signal

- Λ signal is fitted with a Gaussian + a constant
- Mean value and width of the Gaussian depend on y and p_T because the displaced secondary decay vertex is not used for recalculation of the angles
- Secondary vertex depends on p_T
- Flow analysis is done separately in each small y and p_T bin where mean and width of Gaussian are constant; results ($dN_\Lambda/d(\phi - \Phi)$) are merged
$v_2(\Lambda)$ from two different calculations

- I run had a sharp cut on proton $p_T \leq 0.4 \text{ GeV/c}$
- II run had p_T dependent opening angle cut
- Good agreement between two results \rightarrow small systematic error

![Graphs showing v_2 vs. p_T for different cuts and events]

- Semicentral events: $\langle \frac{\sigma}{\sigma_{geo}} \rangle = 10.5\%$
- Central events: $\langle \frac{\sigma}{\sigma_{geo}} \rangle = 3.5\%$
K_S^0 elliptic flow vs p_T for different centralities

- As in the case of $v_2(\Lambda)$, $v_2(K_S^0)$ grows with p_T in non-central collisions
- A difference in the K_S^0 elliptic flow magnitude between events from the two centrality classes

![Graph](image)

Semicentral events

$\langle \frac{\sigma}{\sigma_{geo}} \rangle = 10.5\%$

Central events

$\langle \sigma/\sigma_{geo} \rangle = 3.5\%$
Characteristics of K^0_S signal

![Graph showing mean and width vs. p_T](image)

- Mean (GeV):
 - $2.0 < y < 2.075$: 0.49
 - $2.075 < y < 2.15$: 0.495
 - $2.15 < y < 2.225$: 0.5
 - $2.225 < y < 2.3$: 0.505
 - $2.3 < y < 2.375$: 0.51
 - $2.375 < y < 2.45$: 0.515
 - $2.45 < y < 2.525$: 0.52
 - $2.525 < y < 2.6$: 0.525

- Width (GeV):
 - $2.0 < y < 2.075$: 0.006
 - $2.075 < y < 2.15$: 0.008
 - $2.15 < y < 2.225$: 0.01
 - $2.225 < y < 2.3$: 0.012
 - $2.3 < y < 2.375$: 0.014
 - $2.375 < y < 2.45$: 0.016
 - $2.45 < y < 2.525$: 0.018
 - $2.525 < y < 2.6$: 0.02

SQM 2006, UCLA, Los Angeles, March 27th, 2006

J. Milošević
Correction factors grow with TPC multiplicity due to decreasing flow

An absolute systematic error due to uncertainty in the determination of the reaction plane was estimated to $\Delta v_2 = 0.11\%$ from the difference between the resolutions obtained from correlations of 2 subevents in ϕ and η.

![Graph showing the relationship between TPC multiplicity and $\frac{1}{2}\cos[2(\phi - \Phi)]$.](image-url)