Centrality Dependence of Azimuthal Anisotropy of Strange Hadrons in 200 GeV Au+Au Collisions

Markus Oldenburg
European Organisation for Nuclear Research CERN for the STAR Collaboration

Strange Quark Matter 2006
International Conference on Strangeness in Quark Matter
March 26–31, University of California, Los Angeles, USA
Overview

- Motivation
- Analysis details and technique
- Data and results for \(v_2 \) and \(v_4 \)
- Discussion
- Conclusions
Elliptic flow v_2

- non-central collisions: azimuthal anisotropy in coordinate-space
- interactions \Rightarrow asymmetry in momentum-space
- sensitive to early time in the system’s evolution

Measurement: Fourier expansion of the azimuthal p_T distribution

$$E \frac{d^3N}{d^3p} = \frac{1}{\pi} d^2 \frac{N}{dp_T^2dy} [1 + 2v_1 \cos(\phi - \Psi_R) + 2v_2(2[\phi - \Psi_R]) + ...]$$

$v_2 = \langle \cos(2[\phi - \Psi_R]) \rangle$
Flow of strange hadrons

- freeze-out of multi-strange hadrons
 - at higher temperature T_{fo}
 - with lower collective velocity $\langle \beta_T \rangle$

→ less interaction of strange hadrons with non-strange hadrons

- sensitivity to the early, partonic stage

[Graph showing flow of strange hadrons with temperature T_{fo} and collective velocity $\langle \beta_T \rangle$.]

Dataset and analysis method

- **system**: Au+Au collisions
- **energy**: $\sqrt{s_{NN}} = 200$ GeV

- **event sample**:
 - 13.3 M events 0–80%
 - 6.6 M events 40–80%
 - 5.0 M events 10–40%
 - ~19 M events 0–10%

- **event plane resolution**:
 - 76% for 0–80%
 - 66% for 40–80%
 - 82% for 10–40%
 - 69% for 0–10%

- **analysis method**: v_2 vs. m_{inv}
- **motivated by** Borghini *et al.* [nucl-th/0407041]
- **detailed studies regarding systematic uncertainties still underway**
- **for K^0_S and $\Lambda+\bar{\Lambda}$**
 - ~5% error on v_2 for $p_T<4$ GeV/c
 - rising up to ~25–30% at $4<p_T<6$ GeV/c
 - possible significant non-flow contribution for $p_T>5$ GeV/c

- **Only statistical errors shown in this presentation!**
Min. bias $v_2(p_T)$ for strange hadrons

- Mass ordering at low p_T
- ‘Standard’ Hydro calculation: $T_{ch} = 165$ MeV, $T_{kin} = 130$ MeV
 [P. Huovinen, private communication]
- Model works reasonably well for min. bias at low p_T
Centrality dependence of $v_2(p_T)$

- available high statistics allows for measurement of centrality dependence of $v_2(p_T)$
- comparison to Hydro model calculations shows deviations even at low p_T

K^0_S and Λ data provided by Yan Lu

→ poster on Thursday
NCQ scaling of $v_2(p_T)$ for min. bias

- scaled meson and baryon v_2 agrees at intermediate p_T
- high statistics measurements show deviation from ideal scaling

PHENIX
Centrality dependence of NCQ scaling

- polynomial fit through K_S^0, Λ, and Ξ data
- NCQ scaling seems to work for different centralities as well

See Yan Lu’s poster on Thursday!
\(v_4 \) for \(\Xi^- \) and \(\Xi^+ \)

- Observation of sizable \(v_4 \) with strong \(p_T \) dependence
- \(v_4 \) scales with \(\sim 1.2 \, v_2^2 \) (as it for charged hadrons)

- Ideal fluid dynamics would lead to \(v_4/v_2^2 = 0.5 \)

 [Borghini and Ollitrault, nucl-th/0506045; Kolb, Phys. Rev. C 68, 031902(R)]

Will \(v_4/v_2^2 \) be closer to 0.5 at LHC?
Conclusions

- **The strong flow of strange and multi-strange hadrons indicates collectivity among partons!**

- **Strange hadron v$_2$ at low p$_T$:**
 - show mass ordering
 - follow hydro model for minimum bias
 - deviate from hydro model predictions for different centralities

- **NCQ scaling of v$_2$ at intermediate p$_T$:**
 - deviations from ideal NCQ scaling become visible for minimum bias
 - indication for NCQ scaling even for different centralities

- **v$_4$ of Ξ$^{-}$+Ξ$^{+}$:**
 - shows same scaling (1.2 v$_2^2$) as other particle species
 - Hint for incomplete thermalisation?
Analysis technique

- analysis method: v_2 vs. m_{inv}
- motivated by Borghini et al. [nucl-th/0407041]

$$v_2^{TOT}(m_{inv}) = \langle \cos(2(\phi - \Psi)) \rangle = \frac{v_2^{SIG}(m_{inv})}{SIG + BG} + v_2^{BG}(m_{inv}) \cdot \frac{BG}{SIG + BG}(m_{inv})$$

- advantages over standard method:
 - only one fit per p_T bin
 - smaller systematic uncertainties
- method used for K^0_S, Λ, Ξ, Ω,
- **standard method** and v_2 vs. m_{inv} method give consistent results and provide means for estimating systematic errors
Systematic error estimations for K^0_S and Λ