Anisotropic Flow of Strange Particles at SPS

Daniel Kikoła
Warsaw University of Technology

Grzegorz Stefanek
Institute of Physics, Swietokrzyska Academy, Kielce, Poland.

for the NA49 collaboration
Outline

• Introduction
• Analysis
• Preliminary results on Λ elliptic flow
• Comparison with CERES and STAR data
• First preliminary results on K^0_s elliptic flow
• Summary and outlook
Introduction

Elliptic flow
- an effect of the pressure gradients in the interaction region
- sensitive to EOS and the degree of thermalization
- v_2 of heavy and strange particles → insight into very early stages

Initial spatial anisotropy is transformed into momentum anisotropy characterized by

$$v_2 = \langle \cos(2(\varphi - \Phi_r)) \rangle$$

$$E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_t dp_t dy} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Phi_r)) \right\}$$

$$v_n = \langle \cos(n(\varphi - \Phi_r)) \rangle$$
increase with collision energy towards RHIC data and hydrodynamic model predictions?

What is the energy dependence of elliptic flow for heavier hadrons, in particular, strange hadrons?

Mid-rapidity data, p_T integrated
Centrality Determination

- centrality selection made by the energy measurement in Veto Calorimeter

Pb+Pb 158A GeV

3M events

semi-central trigger

$\sigma/\sigma_{TOT} < 23.5\%$
Method of elliptic flow analysis

- estimate of the reaction plane by the second harmonic event plane ($\Phi_{2\, EP}$) of primary charged pions
- acceptance correction by recentering and mixed-events
- determination of the event plane resolution by correlation of sub-events ($<\cos(2(\Phi_{EP} - \Phi_{RP}))>$)
- evaluation of the Fourier coefficient v_2' from the Λ azimuthal distribution with respect to the event plane
 \[
 \frac{dN}{d(\phi_{lab} - \Phi_{2\, EP})} \sim 1 + 2v_2' \cos[2(\phi_{lab} - \Phi_{2\, EP})] + 2v_4' \cos[4(\phi_{lab} - \Phi_{2\, EP})]
 \]
- correction for the event plane resolution
 \[
 v_2 = \frac{v_2'}{<\cos(2(\Phi_{EP} - \Phi_{RP}))>}
 \]
Selection of Λ candidates

$\Lambda \rightarrow p + \pi^-$ (BR = 63.9%, $c\tau = 7.89$ cm)

1.108 GeV $< m_{p\pi^-} < 1.124$ GeV

Use of the identified pions and protons significantly reduces the background

Identification of Λ decay daughter tracks
Rapidity dependence

Lambda flow

Pb+Pb 158A GeV

\[\sigma/\sigma_{TOT} = 5.0 - 23.5 \% \]

\[\Lambda \text{ elliptic flow} \]

Preliminary

Proton flow

- no significant dependence of \(v_2 \) on rapidity for \(\Lambda \) and protons
p_T and centrality dependence

- Significant increase of Λv_2 with p_T
- Stronger increase in more peripheral collisions

$\sigma/\sigma_{TOT} = 12.5 - 23.5\%$

$\sigma/\sigma_{TOT} = 5 - 12.5\%$

Preliminary

Daniel Kikoła

Strangeness in Quark Matter 2006
• **Comparison with CERES and STAR data**

Good agreement between NA49 and CERES $v_2(p_T)$ of Λ hyperons

Linear rise of $v_2(p_T)$ up to 2 GeV/c weaker increase at SPS than at RHIC → not explained by slightly different centrality
K^0_s Elliptic Flow - p_T dependence

\[\frac{\sigma}{\sigma_{TOT}} = 5 - 23.5 \% \]

One can see elliptic flow effect, analysis on the way
Elliptic flow - different species

- linear increase of v_2 with p_T for all species in mid-central events
- mass hierarchy $v_2(\pi) > v_2(p) > v_2(\Lambda)$ at $p_T < 2$ GeV/c
- similar magnitude of v_2 for all particle species at $p_T \sim 2$ GeV/c
- blast wave fit reproduce v_2 (and p_T spectra) quite well

Model:

Data on pions and protons:
Conclusions

- weak dependence of v_2 on rapidity
- v_2 increases with increasing centrality
- v_2 rises with transverse momentum up to 2.5 GeV/c
- slower rise with p_T at SPS than at RHIC
- good agreement with preliminary CERES results
- Blast Wave model reproduces $v_2(p_T)$ and p_T spectra for Λ, p and π
The NA49 Collaboration

NIKHEF, Amsterdam, Netherlands.
Department of Physics, University of Athens, Athens, Greece.
Comenius University, Bratislava, Slovakia.
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
MIT, Cambridge, USA.
Institute of Nuclear Physics, Cracow, Poland.
Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.
Joint Institute for Nuclear Research, Dubna, Russia.
Fachbereich Physik der Universität, Frankfurt, Germany.
CERN, Geneva, Switzerland.
Institute of Physics Swietokrzyska Academy, Kielce, Poland.
Fachbereich Physik der Universität, Marburg, Germany.
Max-Planck-Institut für Physik, Munich, Germany.
Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic.
Department of Physics, Pusan National University, Pusan, Republic of Korea.
Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA.
Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria.
Institute for Nuclear Studies, Warsaw, Poland.
Institute for Experimental Physics, University of Warsaw, Warsaw, Poland.
Rudjer Boskovic Institute, Zagreb, Croatia,
Warsaw University of Technology, Warsaw, Poland
NA49 Experiment

- Two Vertex TPC (VTPC-1, VTPC-2) inside magnetic field
- Two Main TPC (MTPC-L, MTPC-R) outside magnetic field
- Veto Calorimeter (VCAL) detects projectile spectators

Target: Pb foil 224 mg/cm²
\[\Delta p/p^2 = 7 \times 0.3 \times 10^{-4} \, (GeV/c)^{-1} \]
(VTPC-1, VTPC+MTPC)
dE/dx resolution 3-6 %
Identification of \(\pi^+, \pi^-, K^+, K^-, p, \bar{p}, d, \bar{d} \)
\(K^0_s, \Lambda, \Xi, \Omega, \phi \)