φ-meson Production in Heavy-Ion Collisions at RHIC

Sarah Blyth
for
The STAR Collaboration

Strangeness in Quark Matter 2006
The medium produced in HI collisions is very short-lived → we need probes which carry information from the early stage to find out about the medium constituents:

The φ-meson ($S\bar{S}$) is a clean probe from early time:

- **Small σ** for interactions with non-strange particles$^{[1]}$
- Relatively long-lived (41 fm/c) → decays outside the fireball
- Previous measurements have ruled out $K+K$ coalescence as φ production mechanism$^{[2]}$ → info not “diluted” by hadronic phase

The φ can provide info on particle production mechanisms / medium constituents:

- The φ is a meson but as heavy as Λ,p baryons
 - Differentiate between mass-type or meson/baryon-type dependencies

$^{[1]}$ A. Shor, Phys. Rev. Lett. 54 (1985) 11
We used the high-statistics 200 GeV Au+Au data to measure the ϕ observables at STAR:

- ~ 13.5 M minbias (0-80%) events
- ~ 13 M central triggered (0-10%) events

Measured decay channel:

$\phi \rightarrow K^+ K^-$ ($BR = 49.1\%$)

- STAR TPC used to identify K via dE/dx in TPC gas

STAR Detector

- Event-mixing method used to estimate background from uncorrelated $K^+ K^-$ pairs
- Final subtracted m_{inv} distribution fitted with Breit-Wigner + straight line
Elliptic flow provides early time information on the collectivity of particles from heavy-ion collisions:

- Non-central A+A collisions result in an azimuthally anisotropic distribution of particles in coordinate-space.
- Density gradients and interactions between the particles lead to an asymmetry in momentum-space.
- Signal is self-quenching with time – EARLY TIME OBSERVABLE!

Expanding in a Fourier series:

$$E \frac{d^3 N}{d^3 p} = \frac{1}{\pi} d^2 \frac{N}{dp_T^2 dy} [1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + ...]$$

$$v_2 = \langle \cos(2\phi) \rangle$$
Early time information:

- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering.
- For $p_T > 2$ GeV/c, ϕ v_2 is more consistent with K_S^0 than Λ (favors NCQ$^{[1]}=2$).
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/coalescence models$^{[3]}$)

Early time information:

- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering.

- For $p_T > 2$ GeV/c, ϕ v_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$).

- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:

- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/coalescence models$^{[3]}$).

References:

The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:
- For $p_T<2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T>2$ GeV/c, ϕ v_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$)
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/ coalescence models$^{[3]}$)

The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:
- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering.
- For $p_T > 2$ GeV/c, ϕv_2 is more consistent with K^0_S than Λ (favors NCQ$^{[1]}=2$).
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of v_2 at intermediate p_T (described by recombination/coalescence models$^{[3]}$).

The ϕ experiences significant elliptic flow! (result is mean of 2 different, but consistent methods):

Early time information:
- For $p_T < 2$ GeV/c, ϕ flows as much as other ID'd particles, consistent with hydro. mass-ordering
- For $p_T > 2$ GeV/c, ϕv_2 is more consistent with K_0^0 than Λ (favors NCQ$^{[1]}=2$)
- Consistent with v_2 of other multi-strange hadrons (Ξ, Ω)$^{[2]}$ i.e. s-quarks flow!

Particle production mechanisms:
- Further evidence of species-type dependence of v_2 at intermediate p_T
 (described by recombination/p_T coalescence models$^{[3]}$)

Sarah Blyth, Strangeness in Quark Matter 2006, Los Angeles
The shape of the ϕp_T spectra provide information on the mechanisms of particle production:

- ϕp_T spectra show a systematic centrality-dependent evolution in shape

- For **peripheral collisions**, a pQCD power-law tail is evident
 - Peripheral spectra favor a Levy function description

- For **central collisions**, exponential and Levy functions fit spectra equally well
 - The **power-law tail is suppressed** by the medium produced in central collisions
For both centrality groupings, R_{CP} of $\varphi < 1$:

- φ yield suppressed in central compared to peripheral collisions:

Particle grouping behaviour:

- Like for v_2, φ follows same trend as K^0_S and K^* \cite{1} in R_{CP}

- Confirmation of meson-baryon dependence of R_{CP} rather than mass-type dependence

- Described by recombination/coalescence models\cite{2}

\begin{itemize}
 \item \[1\] STAR Collab., Phys. Rev. C 71 (2005) 064902
 \item \[2\] R. J. Fries \textit{et al.}, Phys. Rev. C 68 (2003) 044902
\end{itemize}
Comparison with model expectations on particle production can give insight on the constituents of the medium produced in heavy-ion collisions:

- **R. Hwa's recombination model**[1]:
 - ϕ and Ω (sss) spectra ($p_T < 8$ GeV/c) mainly due to recombination of thermal quarks (TT)
 - Seems to match data well

- **BUT...** Ω/ϕ ratio has similar shape to other baryon/meson measurements
- Model matches data for $p_T < 4$ GeV/c

[1] R. Hwa & C-B Yang, nucl-th/0602024
Conclusions

- **Large elliptic flow** (despite small σ) at low p_T
- NCQ-scaling of v_2 for $p_T > 2$ GeV/c (similar to Ω (sss))
- Reco. models describe data well\(^1\)

- R_{CP} critical confirmation of **baryon-meson** dependence of RHIC observables
- Scaling described by reco. models

- Central data well-described (intermediate p_T) by reco. model\(^2\)
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/φ ratio well-described by **thermal quark reco.** model up to $p_T \sim 4$ GeV/c\(^2\)

\(^2\) R. Hwa & C-B Yang, nucl-th/0602024
Conclusions

- **Large elliptic flow** (despite small σ) at low p_T
- NCQ-scaling of v_2 for $p_T > 2$ GeV/c (similar to Ω (sss))
- Reco. models describe data well1

- R_{CP} critical confirmation of baryon-meson dependence of RHIC observables
- Scaling described by reco. models

- Central data well-described (intermediate p_T) by reco. model2
- pQCD power-law tails suppressed in central compared to peripheral spectra
- Central Ω/ϕ ratio well-described by thermal quark reco. model up to $p_T \sim 4$ GeV/c2

Conclusions

- **Large elliptic flow** (despite small σ) at low p_T

- **NCQ-scaling of v_2 for $p_T > 2$ GeV/c** (similar to Ω (sss))

- **Reco. models describe data well**\(^\text{[1]}\)

- **R_{CP} critical confirmation of baryon-meson dependence of RHIC observables**

- **Scaling described by reco. models**

- **Central data well-described (intermediate p_T) by reco. model**\(^\text{[2]}\)

- **pQCD power-law tails suppressed in central compared to peripheral spectra**

- **Central Ω/ϕ ratio well-described by thermal quark reco. model up to $p_T \sim 4$ GeV/c**\(^\text{[2]}\)

Further interesting predictions can be investigated using ϕ-meson observables:

- **Measurement of angular correlations with respect to a ϕ-meson trigger particle**\(^{[1]}\):
 - Investigates particle production mechanism

- **ϕ di-lepton decay channel is a very clean probe from the early stage (e^+-e^- do not interact strongly)**

\[\phi \rightarrow e^+ + e^- \]

- Good channel to search for modifications of hadron properties due to the hot medium\(^{[2]}\)
- Will be a challenge: $\phi \rightarrow e^+ + e^-$ (BR $\sim 10^{-4}$)
- STAR Full barrel Time Of Flight (TOF) detector (installed by 2008) will be a huge asset in making this measurement!

\(^{[1]}\) R. Hwa & C-B Yang, nucl-th/0602024
EXTRA SLIDES...
For $p_T > 2$ GeV/c, φv_2 is more consistent with K^0_S than Λ (favors NCQ=2):

Statistical errors only:

<table>
<thead>
<tr>
<th>pT range</th>
<th>Compare NCQ =</th>
<th>χ^2</th>
<th>ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 1.5$ GeV/c</td>
<td>2 (meson)</td>
<td>2.517</td>
<td>5</td>
</tr>
<tr>
<td>$p_T > 2.0$ GeV/c</td>
<td>2 (meson)</td>
<td>2.481</td>
<td>4</td>
</tr>
<tr>
<td>$p_T > 2.25$ GeV/c</td>
<td>2 (meson)</td>
<td>0.618</td>
<td>3</td>
</tr>
<tr>
<td>$p_T > 2.25$ GeV/c</td>
<td>3 (baryon)</td>
<td>5.886</td>
<td>3</td>
</tr>
</tbody>
</table>

Statistical & Systematic errors:
(Added in quadrature)

<table>
<thead>
<tr>
<th>pT range</th>
<th>Compare NCQ =</th>
<th>χ^2</th>
<th>ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 1.5$ GeV/c</td>
<td>2 (meson)</td>
<td>1.226</td>
<td>5</td>
</tr>
<tr>
<td>$p_T > 2.0$ GeV/c</td>
<td>2 (meson)</td>
<td>1.216</td>
<td>4</td>
</tr>
<tr>
<td>$p_T > 2.25$ GeV/c</td>
<td>2 (meson)</td>
<td>0.388</td>
<td>3</td>
</tr>
<tr>
<td>$p_T > 2.25$ GeV/c</td>
<td>3 (baryon)</td>
<td>2.974</td>
<td>3</td>
</tr>
</tbody>
</table>
The turn-over of baryon/meson ratio shifts to higher p_T as a function of strangeness content:

- $\Omega/\phi = \text{sss}/\text{ss} \sim s$
- $\Lambda/K^0_S = \text{uds}/u(d)s$
- $p/\pi = \text{uud}/u(d)d \sim u$