Chiral Effective Theories and Lattice QCD

Claude Bernard
Washington University
St. Louis
QCD & Nonlinear Sigma Model

• In the early 80’s, I had lots of discussions with Mike about QCD, and about the nonlinear sigma model.
 – a lot of what I know about both these subjects, I learned from Mike!

• Since then, a great deal of my research has been on these two subjects, and especially their intersection:
 – Chiral effective theory & chiral perturbation theory (χPT), based on nonlinear sigma model, provides indispensable tool in understanding lattice QCD, and enabling us to extract useful physical results from the lattice.
Outline

- Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
Outline

- Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
- How chiral effective theories are crucial for understanding the physics & extracting the results
Outline

- Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
- How chiral effective theories are crucial for understanding the physics & extracting the results
 - extrapolation in light quark masses
Outline

- Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
- How chiral effective theories are crucial for understanding the physics & extracting the results
 - extrapolation in light quark masses
 - quenching and partial quenching
Outline

• Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
• How chiral effective theories are crucial for understanding the physics & extracting the results
 – extrapolation in light quark masses
 – quenching and partial quenching
 – discretization errors
Outline

• Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
• How chiral effective theories are crucial for understanding the physics & extracting the results
 – extrapolation in light quark masses
 – quenching and partial quenching
 – discretization errors
 – “rooting” of staggered (Kogut-Susskind) quarks
Outline

• Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC

• How chiral effective theories are crucial for understanding the physics & extracting the results
 – extrapolation in light quark masses
 – quenching and partial quenching
 – discretization errors
 – “rooting” of staggered (Kogut-Susskind) quarks
Outline

• Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC

• How chiral effective theories are crucial for understanding the physics & extracting the results
 – extrapolation in light quark masses
 – quenching and partial quenching
 – discretization errors
 – “rooting” of staggered (Kogut-Susskind) quarks
 – (finite volume corrections)
Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC

How chiral effective theories are crucial for understanding the physics & extracting the results

- extrapolation in light quark masses
- quenching and partial quenching
- discretization errors
- “rooting” of staggered (Kogut-Susskind) quarks
- (finite volume corrections)
- (physics of weak operators, e.g. for $K \rightarrow 2\pi$)
Outline

• Some recent lattice QCD results from MILC Collaboration and Fermilab/MILC
• How chiral effective theories are crucial for understanding the physics & extracting the results
 – extrapolation in light quark masses
 – quenching and partial quenching
 – discretization errors
 – “rooting” of staggered (Kogut-Susskind) quarks
 – (finite volume corrections)
 – (physics of weak operators, e.g. for $K \to 2\pi$)
• Remarks & Outlook
Milestone in Lattice QCD

$n_f=0$ results (circa 2000)

- f_π
- f_K
- $3M_{\Xi} - M_N$
- $2M_{B_s} - M_T$
- $\psi(1P-1S)$
- $\Upsilon(1D-1S)$
- $\Upsilon(2P-1S)$
- $\Upsilon(3S-1S)$
- $\Upsilon(1P-1S)$

1% errs

LatticeQCD/Exp’t
Milestone in Lattice QCD

$n_F=0$ results (circa 2000)

Quenched approx.

- f_π
- f_K
- $3M_{\Xi} - M_N$
- $2M_{B_s} - M_T$
- $\psi(1P-1S)$
- $\Upsilon(1D-1S)$
- $\Upsilon(2P-1S)$
- $\Upsilon(3S-1S)$
- $\Upsilon(1P-1S)$

LatticeQCD/Exp't
Milestone in Lattice QCD

• Davies et al. [Fermilab/HPQCD/MILC/UKQCD], PRL 92 (2004) 022001 and more recent updates.
Milestone in Lattice QCD

n_F=0 results (circa 2000)

Quenched approx.

n_F=3 results (2003–2008)

Uses “rooted” staggered quarks

- Davies et al. [Fermilab/HPQCD/MILC/UKQCD], PRL 92 (2004) 022001 and more recent updates.
Pion Decay Constant

\[\frac{\chi^2}{\text{dof}} = 462/500 \]

\[\text{CL} = 0.97 \]

\[\text{am}' \]

\[\text{full, cont., } m_s \]

\[\text{extrap. } \] \text{expt. } (r_1=0.318 \text{ fm from } T) \]
Pion Decay Constant

- MILC Collaboration

\[\frac{f_\pi r_1}{\sqrt{2}} \]

\[\chi^2/\text{dof} = 462/500 \]

CL = 0.97
Pion Decay Constant

- MILC Collaboration
- "Partially quenched" lattice data:

\[
\chi^2/\text{dof} = 462/500
\]

\[
\text{CL} = 0.97
\]
MILC Collaboration

“Partially quenched” lattice data:

- sea quark masses held fixed at various values while valence masses vary
• MILC Collaboration
 • “Partially quenched” lattice data:
 – sea quark masses held fixed at various values while valence masses vary
 • Partially quenched chiral pert. theory gives form of fit function.
Pion Decay Constant

- Red line:

\[\chi^2 / \text{dof} = 462 / 500 \]

\[CL = 0.97 \]
Pion Decay Constant

- Red line: extrapolate to the continuum

\[\chi^2/\text{dof}=462/500 \]

CL = 0.97

\[(f_\pi r_1)/\sqrt{2} \]

\[(m_x+m_y)r_1 \times (Z_m/Z_m^{\text{fine}}) \]
Pion Decay Constant

- Red line:
 - extrapolate to the continuum
 - set valence and sea masses equal to get “full QCD”
Pion Decay Constant

- Red line:
 - extrapolate to the continuum
 - set valence and sea masses equal to get "full QCD"
 - extrapolate to physical u,d mass to get f_π
Pion Decay Constant

- **Red line:**
 - extrapolate to the continuum
 - set valence and sea masses equal to get "full QCD"
 - extrapolate to physical u,d mass to get f_π
- All done with χPT
Pion Decay Constant

- Red line:
 - extrapolate to the continuum
 - set valence and sea masses equal to get "full QCD"
 - extrapolate to physical u,d mass to get f_π

- All done with χPT

- Consistency with expt has just improved:
Pion Decay Constant

- Red line:
 - extrapolate to the continuum
 - set valence and sea masses equal to get “full QCD”
 - extrapolate to physical u,d mass to get f_π

- All done with χPT
- Consistency with expt has just improved:
 - HPQCD revised their Υ splittings down by 2.5%
Decay Constant Results
From chiral fits of the type shown, get
From chiral fits of the type shown, get

\[\frac{f_K}{f_\pi} = 1.198(2)(^{+6}_{-8}) \]
• From chiral fits of the type shown, get
 \[
 \frac{f_K}{f_\pi} = 1.198(2)(^{+6}_{-8})
 \]

• Using \(K_{\ell2}\) decays, & following Marciano PRL 93 (2004) 231803, this gives:
Decay Constant Results

- From chiral fits of the type shown, get
 \[\frac{f_K}{f_\pi} = 1.198(2)(^{+6}_{-8}) \]

- Using $K_{\ell 2}$ decays, & following Marciano PRL 93 (2004) 231803, this gives:
 \[|V_{us}| = 0.2247(^{+16}_{-13}) \]
From chiral fits of the type shown, get

\[
\frac{f_K}{f_\pi} = 1.198(2)(^{+6}_{-8})
\]

Using \(K_{\ell 2} \) decays, & following Marciano PRL 93 (2004) 231803, this gives:

\[
|V_{us}| = 0.2247(^{+16}_{-13})
\]

Competitive with PDG (2008) value from \(K_{\ell 3} \) decays and non-lattice theory:
Decay Constant Results

- From chiral fits of the type shown, get
 \[\frac{f_K}{f_\pi} = 1.198(2)(^{+6}_{-8}) \]

- Using \(K_{\ell 2} \) decays, & following Marciano PRL 93 (2004) 231803, this gives:
 \[|V_{us}| = 0.2247(^{+16}_{-13}) \]

- Competitive with PDG (2008) value from \(K_{\ell 3} \) decays and non-lattice theory:
 \[|V_{us}| = 0.2255(19) \]
Light Quark Masses

$M_{\text{meson}}^2 \text{(GeV)}^2$

$\frac{m_x}{m'_s}$

CL=0.99

coarser

coarse

fine

superfine
Light Quark Masses

- MILC Collaboration

![Graph showing light quark masses with various data points and lines indicating different CL values and quark types.](image-url)
Light Quark Masses

- MILC Collaboration
- “Partially quenched” lattice data:
Light Quark Masses

- MILC Collaboration
- “Partially quenched” lattice data:
 - sea quark masses held fixed at various values while u,d valence masses vary
Light Quark Masses

- MILC Collaboration
- “Partially quenched” lattice data:
 - sea quark masses held fixed at various values while u,d valence masses vary
 - for kaons, strange valence mass also held fixed at various values
MILC Collaboration

Red lines:

Light Quark Masses

\[M^2_{\text{meson}} \ (\text{GeV}^2) \]

\[m_x/m_s' \]

CL = 0.99

- coarser
- coarse
- fine
- superfine

continuum, \(m_s \)
Light Quark Masses

- MILC Collaboration
- Red lines: extrapolate to continuum
Light Quark Masses

- MILC Collaboration
- Red lines:
 - extrapolate to continuum
 - set valence & sea masses equal
• MILC Collaboration

• Red lines:
 – extrapolate to continuum
 – set valence & sea masses equal
 – adjust masses to get (isospin averaged) pion & kaon masses right

Light Quark Masses
Light Quark Masses

- MILC Collaboration
- Red lines:
 - extrapolate to continuum
 - set valence & sea masses equal
 - adjust masses to get (isospin averaged) pion & kaon masses right
 - gives m_s and average u,d mass
• MILC Collaboration
• Red lines:
 – extrapolate to continuum
 – set valence & sea masses equal
 – adjust masses to get (isospin averaged) pion & kaon masses right
 – gives m_s and average u,d mass
 – extend kaon line to get K^+ mass right

Light Quark Masses
Light Quark Masses

- MILC Collaboration
- Red lines:
 - extrapolate to continuum
 - set valence & sea masses equal
 - adjust masses to get (isospin averaged) pion & kaon masses right
 - gives m_s and average u,d mass
 - extend kaon line to get K^+ mass right
 - gives m_u
Quark Mass Result
Quark Mass Result

- From chiral fits of the type shown, get
Quark Mass Result

- From chiral fits of the type shown, get

\[m_u / m_d = 0.432(1)(9)(39) \]
Quark Mass Result

- From chiral fits of the type shown, get

\[\frac{m_u}{m_d} = 0.432(1)(9)(39) \]

- Rules out vanishing up quark mass as solution of the strong CP problem.
From chiral fits of the type shown, get

\[\frac{m_u}{m_d} = 0.432(1)(9)(39) \]

Rules out vanishing up quark mass as solution of the strong CP problem.

- Spontaneously broken Peccei-Quinn symmetry, with an axion, is therefore preferred solution.
From chiral fits of the type shown, get

$$\frac{m_u}{m_d} = 0.432(1)(9)(39)$$

Rules out vanishing up quark mass as solution of the strong CP problem.

– Spontaneously broken **Peccei-Quinn** symmetry, with an axion, is therefore preferred solution.

– (Spontaneously broken CP is also phenomenologically disfavored: see, e.g. Carpenter, Dine, & Festuccia, arXiv:0906.1273).
Quark Mass Result

• From chiral fits of the type shown, get

\[
m_u/m_d = 0.432(1)(9)(39)\]

• Rules out vanishing up quark mass as solution of the strong CP problem.
 – Spontaneously broken Peccei-Quinn symmetry, with an axion, is therefore preferred solution.
 – (Spontaneously broken CP is also phenomenologically disfavored: see, e.g. Carpenter, Dine, & Festuccia, arXiv:0906.1273).

• Dominant error is at present EM effect, which comes from continuum analysis.
Results for Heavy-Light Mesons

$D \rightarrow Kl\nu$

- lattice QCD [Fermilab/MILC, hep-ph/0408306]
- experiment [Belle, hep-ex/0510003]
- experiment [BaBar, 0704.0020 [hep-ex]]
- experiment [CLEO-c, 0712.0998 [hep-ex]]
- experiment [CLEO-c, 0810.3878 [hep-ex]]
Results for Heavy-Light Mesons

\[D \to Kl\nu \]

- lattice QCD [Fermilab/MILC, hep-ph/0408306]
- experiment [Belle, hep-ex/0510003]
- experiment [BaBar, 0704.0020 [hep-ex]]
- experiment [CLEO-c, 0712.0998 [hep-ex]]
- experiment [CLEO-c, 0810.3878 [hep-ex]]

\[f_+^2(q^2) / m_{D_s^*}^2 \]

Prediction
Results for Heavy-Light Mesons

\[D \rightarrow \pi l \nu \]

- lattice QCD [Fermilab/MILC, hep-ph/0408306]
- experiment [Belle, hep-ex/0510003]
- experiment [CLEO-c, 0712.0998 [hep-ex]]
- experiment [CLEO-c, 0810.3878 [hep-ex]]
Results for Heavy-Light Mesons

\[D \rightarrow \pi l\nu \]

- lattice QCD [Fermilab/MILC, hep-ph/0408306]
- experiment [Belle, hep-ex/0510003]
- experiment [CLEO-c, 0712.0998 [hep-ex]]
- experiment [CLEO-c, 0810.3878 [hep-ex]]

\[f_+^2(q^2) \]

\[q_{\text{max}}^2 / m_{D^*}^2 \]
$B \rightarrow \pi l\nu$

Results for Heavy-Light Mesons

- lattice QCD [Fermilab/MILC, 0811.3640 [hep-lat]]
- experiment [BaBar, hep-ex/0612020]
Results for Heavy-Light Mesons

\[B \rightarrow \pi l \nu \]

Determines \(|V_{ub}|\)

- lattice QCD [Fermilab/MILC, 0811.3640 [hep-lat]]
- experiment [BaBar, hep-ex/0612020]
Chiral Effective Theories
Since computer time increases as a power of \(1/m\), need to understand light (u,d) mass dependence and extrapolate.
Since computer time increases as a power of \(1/m \), need to understand light (u,d) mass dependence and extrapolate.

\(- \chi PT \) does this.
Since computer time increases as a power of $1/m$, need to understand light (u,d) mass dependence and extrapolate.

- χPT does this.

More non-trivial: theory is mutilated in some way by use of quenched approximation (in the past) or partial quenching (in present simulations).
• Since computer time increases as a power of $1/m$, need to understand light (u,d) mass dependence and extrapolate.
 – χPT does this.

• More non-trivial: theory is mutilated in some way by use of quenched approximation (in the past) or partial quenching (in present simulations).
 – Can we understand these pathologies in χPT?
Since computer time increases as a power of $1/m$, need to understand light (u,d) mass dependence and extrapolate.

- χPT does this.

More non-trivial: theory is mutilated in some way by use of quenched approximation (in the past) or partial quenching (in present simulations).

- Can we understand these pathologies in χPT?

- Can we use χPT to interpolate/extrapolate the pathologies away (in the partially quenched (PQ) case)?
Fermion determinant is by far the most expensive part of simulating QCD numerically.

"Quenched approximation" (Hamber and Parisi, 1981; Marinari, Parisi, Rebbi, 1981; Weingarten, 1982) just drops the determinant.

- a model for QCD, but not a systematically improvable approximation.
- now outdated.

Any use of quenched theory requires a corresponding chiral theory for quark mass extrapolations.

- and to understand the pathologies of quenching.
- sets stage for PQ case, which is crucial for current work.
Early attempt (Sharpe, 1990) starts with standard χPT and tries to find and drop those meson diagrams that have quark loops.

More systematic to use a Lagrangian approach (CB & Golterman, 1992).

- at QCD level, Lagrangian for quenched theory adds one bosonic, ghost quark (\tilde{q}) for each real one (q) (Morel, 1987).
 - determinants cancel
- at chiral level, get *more* “pions”:
 \[
 q\bar{q} \quad \tilde{q}\bar{\tilde{q}} \quad q\tilde{q} \quad \tilde{q}\bar{q}
 \]
 - last two are fermionic pions.
Quenched Chiral Theory

- Quenched χPT replaces ordinary symmetry group:
 \[SU(3)_L \times SU(3)_R \]

- by graded group:
 \[SU(3\mid 3)_L \times SU(3\mid 3)_R \]

- Lagrangian looks like ordinary χPT but replaces trace with supertrace:
 \[\frac{f^2}{8} \text{str}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{f^2 B}{4} \text{str}(M^\dagger \Sigma + M \Sigma^\dagger) \]

 - In calculations, signs from str force cancelation of meson contributions that contain sea quark loops.
Modern simulations: valence quark masses often chosen different from sea quark masses.

Called partial quenching (CB & Golterman, 1994).

- sea quarks are expensive.
- extract much more information from gluon configuration that includes sea quark effects by allowing valence quarks to take many values.
- info of physical (“full QCD”) theory is a subset of available info:
 - when valence and sea masses set equal.
Partial Quenching

• Reason for the name:
 – start with normal theory of sea quarks.
 – add some valence quarks with (possibly) different masses.
 – quench the valence quarks by adding ghost quarks.
 – final theory has some quenched quarks and some unquenched quarks.

• Get chiral theory by generalizing quenched case.
 – E.g. if we just want to study mesons, 2 valence quarks are sufficient.
 – Lagrangian looks same as quenched case, but symmetry is:
 \[SU(5|2)_L \times SU(5|2)_R \]
Sharpe & Shoresh, 2000: physical results can be obtained from PQ simulations without ever simulating equal valence & sea masses.

- can fit lattice data with $PQ\chi PT$
- then set valence & sea masses equal in the fit.
- this is basically what is done in results shown earlier, e.g...
Sharpe & Shoresh, 2000: physical results can be obtained from PQ simulations without ever simulating equal valence & sea masses.

- can fit lattice data with $PQ\chi PT$
- then set valence & sea masses equal in the fit.
- this is basically what is done in results shown earlier, e.g...
Discretization Errors
Sharpe & Singleton, 1998 and Lee & Sharpe, 1999 showed how to include the effects of lattice discretization errors in χPT.
Sharpe & Singleton, 1998 and Lee & Sharpe, 1999 showed how to include the effects of lattice discretization errors in χ^PT.

- Idea is simple (Symanzik, 1980): at the QCD level, discretization (cutoff) effects are represented by the introduction of higher dimensional operators (suppressed by powers of the cutoff).
Discretization Errors

• Sharpe & Singleton, 1998 and Lee & Sharpe, 1999 showed how to include the effects of lattice discretization errors in χPT

 – idea is simple (Symanzik, 1980): at the QCD level, discretization (cutoff) effects are represented by the introduction of higher dimensional operators (suppressed by powers of the cutoff).

 – e.g. for Wilson quarks, which violate chiral symmetry, leading discretization effects come from dimension 5 operator:
• Sharpe & Singleton, 1998 and Lee & Sharpe, 1999 showed how to include the effects of lattice discretization errors in χPT
 – idea is simple (Symanzik, 1980): at the QCD level, discretization (cutoff) effects are represented by the introduction of higher dimensional operators (suppressed by powers of the cutoff).
 – e.g. for Wilson quarks, which violate chiral symmetry, leading discretization effects come from dimension 5 operator:

$$\alpha \bar{\Psi} \sigma_{\mu\nu} F_{\mu\nu} \Psi$$
• Sharpe & Singleton, 1998 and Lee & Sharpe, 1999 showed how to include the effects of lattice discretization errors in χPT

– idea is simple (Symanzik, 1980): at the QCD level, discretization (cutoff) effects are represented by the introduction of higher dimensional operators (suppressed by powers of the cutoff).

– e.g. for Wilson quarks, which violate chiral symmetry, leading discretization effects come from dimension 5 operator:

$$a \overline{\Psi} \sigma_{\mu \nu} F_{\mu \nu} \Psi$$

• where a is lattice spacing.
Discretization Effects in Chiral Theory
Discretization Effects in Chiral Theory

- Discretization effects at chiral level:
Discretization Effects in Chiral Theory

- Discretization effects at chiral level:
 - add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
Discretization effects at chiral level:
- add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
- easily done using “spurion” approach
Discretization effects at chiral level:

– add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
– easily done using “spurion” approach
 • same way that chiral symmetry breaking by mass terms is included in chiral theory.
Discretization Effects at Chiral Level:

- Add chiral operators corresponding to the \(O(a, a^2, ...) \) higher dimensional operators.
- Easily done using “spurion” approach
 - Same way that chiral symmetry breaking by mass terms is included in chiral theory.

For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
Discretization Effects at Chiral Level:
- Add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
- Easily done using “spurion” approach
 - Same way that chiral symmetry breaking by mass terms is included in chiral theory.

For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
- Staggered quarks have an incomplete reduction of doubling symmetry.
Discretization Effects at Chiral Level:
- Add chiral operators corresponding to the $O(a, a^2, ...)$ higher dimensional operators.
- Easily done using “spurion” approach
 - Same way that chiral symmetry breaking by mass terms is included in chiral theory.

For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
- Staggered quarks have an incomplete reduction of doubling symmetry.
- 4-fold multiplication of species
Discretization Effects in Chiral Theory

- Discretization effects at chiral level:
 - add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
 - easily done using “spurion” approach
 - same way that chiral symmetry breaking by mass terms is included in chiral theory.

- For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
 - Staggered quarks have an incomplete reduction of doubling symmetry.
 - 4-fold multiplication of species
 - new (unphysical) quantum number called “taste”
Discretization Effects in Chiral Theory

- Discretization effects at chiral level:
 - add chiral operators corresponding to the $O(a,a^2,...)$ higher dimensional operators.
 - easily done using “spurion” approach
 - same way that chiral symmetry breaking by mass terms is included in chiral theory.

- For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
 - Staggered quarks have an incomplete reduction of doubling symmetry.
 - 4-fold multiplication of species
 - new (unphysical) quantum number called “taste”
 - quarks come in 4 tastes.
• Discretization effects at chiral level:
 – add chiral operators corresponding to the $O(a,a^2,\ldots)$ higher dimensional operators.
 – easily done using “spurion” approach
 • same way that chiral symmetry breaking by mass terms is included in chiral theory.

• For staggered quarks, this is straightforward but messy, because of complicated symmetries of the staggered action (Lee & Sharpe, 1999).
 – Staggered quarks have an incomplete reduction of doubling symmetry.
 – 4-fold multiplication of species
 – new (unphysical) quantum number called “taste”
 • quarks come in 4 tastes.
 • pions come in 16 tastes.
Staggered Quarks
Staggered Quarks

- $SU(4) \times SU(4)$ taste symmetry in continuum limit is violated at $O(a^2)$
Staggered Quarks

- **SU(4) x SU(4) taste symmetry in continuum limit is violated at $O(a^2)$**

 - E.g.:

 $$a^2 \bar{\Psi}_i (\gamma_\mu \otimes \xi_5) \Psi_i \bar{\Psi}_j (\gamma_\mu \otimes \xi_5) \Psi_j$$
Staggered Quarks

- \(\text{SU}(4) \times \text{SU}(4) \) taste symmetry in continuum limit is violated at \(\mathcal{O}(a^2) \)

 - E.g.:

 \[
 a^2 \bar{\Psi}_i (\gamma_\mu \otimes \xi_5) \Psi_i \bar{\Psi}_j (\gamma_\mu \otimes \xi_5) \Psi_j
 \]

 - where \(\xi_5 \) is a (fixed) 4 x 4 taste matrix, and \(i, j \) are flavor indices.
Staggered Quarks

- **SU(4) x SU(4) taste symmetry in continuum limit is violated at O(a^2)**
 - E.g.:
 \[a^2 \, \bar{\Psi}_i (\gamma_\mu \otimes \xi_5) \Psi_i \bar{\Psi}_j (\gamma_\mu \otimes \xi_5) \Psi_j \]
 - where \(\xi_5 \) is a (fixed) 4 x 4 taste matrix, and \(i, j \) are flavor indices.

- **Main nontrivial issue with staggered quarks is the need to remove the taste degree of freedom.**
Staggered Quarks

- SU(4) x SU(4) taste symmetry in continuum limit is violated at O(a^2)
 - E.g.:
 \[a^2 \bar{\Psi}_i (\gamma_\mu \otimes \xi_5) \Psi_i \bar{\Psi}_j (\gamma_\mu \otimes \xi_5) \Psi_j \]
 - where \(\xi_5 \) is a (fixed) 4 x 4 taste matrix, and \(i, j \) are flavor indices.

- Main nontrivial issue with staggered quarks is the need to remove the taste degree of freedom.
 - we do this by “rooting” (Marinari, Parisi, Rebbi, 1981): take 4th root of fermion determinant.
Staggered Quarks

- **SU(4) x SU(4) taste symmetry in continuum limit is violated at $O(a^2)$**
 - E.g.:
 \[a^2 \overline{\Psi}_i (\gamma_\mu \otimes \xi_5) \Psi_i \quad \overline{\Psi}_j (\gamma_\mu \otimes \xi_5) \Psi_j \]
 - where ξ_5 is a (fixed) 4 x 4 taste matrix, and i, j are flavor indices.

- **Main nontrivial issue with staggered quarks is the need to remove the taste degree of freedom.**
 - we do this by “rooting” (Marinari, Parisi, Rebbi, 1981): take 4th root of fermion determinant.
 - because of taste symmetry violation, this is non-local at $a \neq 0$ (CB, Golterman, Shamir, 2006).
Rooting

- Does the non-locality persist as $a \to 0$?
 - if so, rooted staggered simulations would not be correctly describing QCD.

- RG argument (Shamir, 2005 & 2007) gives some confidence that non-locality vanishes in continuum limit.
 - rooted staggered QCD appears to be in the desired universality class.

- Can also approach the question from the effective theory point of view (CB, 2006; CB, Golterman and Shamir, 2008).
 - If we can construct the chiral effective theory for rooted staggered QCD, can use it as a laboratory to test if desired continuum theory emerges as $a \to 0$.

Expression: $a \to 0$
Rooted Staggered Ch. Pert. Theory
Rooted Staggered Ch. Pert. Theory

- Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
Rooted Staggered Ch. Pert. Theory

- Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
 - take n_r replicas of each flavor of staggered quarks.
• Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
 – take n_r replicas of each flavor of staggered quarks.
 – calculate to a given order in χPT.
Rooted Staggered Ch. Pert. Theory

• Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
 – take \(n_r \) replicas of each flavor of staggered quarks.
 – calculate to a given order in \(\chi PT \).
 – set \(n_r = \frac{1}{4} \)
• Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
 – take n_r replicas of each flavor of staggered quarks.
 – calculate to a given order in χPT.
 – set $n_r = \frac{1}{4}$

• This chiral theory ($r S\chi PT$) has expected sicknesses of rooted staggered QCD at $a \neq 0$.
Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):

- take n_r replicas of each flavor of staggered quarks.
- calculate to a given order in χPT.
- set $n_r = \frac{1}{4}$

This chiral theory ($rS\chi PT$) has expected sicknesses of rooted staggered QCD at $a \neq 0$.
- non-local, non-unitary
Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
- take n_r replicas of each flavor of staggered quarks.
- calculate to a given order in χPT .
- set $n_r = \frac{1}{4}$

This chiral theory ($rS\chi PT$) has expected sicknesses of rooted staggered QCD at $a \neq 0$.
- non-local, non-unitary

But does it capture all the sicknesses?
Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
- take n_r replicas of each flavor of staggered quarks.
- calculate to a given order in χPT.
- set $n_r = \frac{1}{4}$

This chiral theory ($rS\chi PT$) has expected sicknesses of rooted staggered QCD at $a \neq 0$.
- non-local, non-unitary

But does it capture all the sicknesses?
- i.e., is it the correct chiral effective theory?
Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
– take \(n_r \) replicas of each flavor of staggered quarks.
– calculate to a given order in \(\chi PT \).
– set \(n_r = \frac{1}{4} \)

This chiral theory (\(rS\chi PT \)) has expected sicknesses of rooted staggered QCD at \(a \neq 0 \).
– non-local, non-unitary

But does it capture all the sicknesses?
– i.e., is it the correct chiral effective theory?
– not obvious, since flavor-dependence in QCD is in general non-perturbative.
• Simple conjecture of how to implement rooting in the chiral theory (Aubin and CB, 2002, 2003):
 – take n_r replicas of each flavor of staggered quarks.
 – calculate to a given order in χPT.
 – set $n_r = \frac{1}{4}$

• This chiral theory ($rS\chi PT$) has expected sicknesses of rooted staggered QCD at $a \neq 0$.
 – non-local, non-unitary

• But does it capture all the sicknesses?
 – i.e., is it the correct chiral effective theory?
 – not obvious, since flavor-dependence in QCD is in general non-perturbative.
 – no unique analytic continuation from the integers.
• Arguments that $rS\chi PT$ is the correct chiral theory:
Rooted Staggered Ch. Pert. Theory

• Arguments that $rS\chi PT$ is the correct chiral theory:
 – CB, 2006: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.
• Arguments that \(rS\chi PT \) is the correct chiral theory:

 – **CB, 2006**: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.

 • There rooting works trivially (the determinant of 4 degenerate rooted flavors is same as the determinant of 1 unrooted flavor).
• Arguments that $rS\chi PT$ is the correct chiral theory:
 – CB, 2006: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.
 • There rooting works trivially (the determinant of 4 degenerate rooted flavors is same as the determinant of 1 unrooted flavor).
 • So chiral theory is known at starting point.
• Arguments that $rS\chi PT$ is the correct chiral theory:

 – **CB, 2006**: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.

 • There rooting works trivially (the determinant of 4 degenerate rooted flavors is same as the determinant of 1 unrooted flavor).

 • So chiral theory is known at starting point.

 – **CB, Golterman, Shamir, 2008**: Construct chiral theory by developing alternative replica trick which is rigorously polynomial at any order in a.
• Arguments that $rS\chi PT$ is the correct chiral theory:

 – CB, 2006: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.
 • There rooting works trivially (the determinant of 4 degenerate rooted flavors is same as the determinant of 1 unrooted flavor).
 • So chiral theory is known at starting point.

 – CB, Golterman, Shamir, 2008: Construct chiral theory by developing alternative replica trick which is rigorously polynomial at any order in a.
 • uses Shamir’s RG construction to bound size of taste symmetry violations (a discretization error).
Arguments that $rS\chi PT$ is the correct chiral theory:

- **CB, 2006**: Construct chiral theory by expanding around the case of 4 degenerate flavors of staggered quarks.

 - There rooting works trivially (the determinant of 4 degenerate rooted flavors is same as the determinant of 1 unrooted flavor).

 - So chiral theory is known at starting point.

- **CB, Golterman, Shamir, 2008**: Construct chiral theory by developing alternative replica trick which is rigorously polynomial at any order in a.

 - uses Shamir’s RG construction to bound size of taste symmetry violations (a discretization error).

 - replicas connected to taste-violations only.
Rooted Staggered Ch. Pert. Theory

- Once $rS\chi PT$ is validated as the correct chiral theory:
Once $rS\chi PT$ is validated as the correct chiral theory:

– easy to check that continuum χPT emerges in the limit $a \to 0$.
Once \(rS\chi PT \) is validated as the correct chiral theory:

- easy to check that continuum \(\chi PT \) emerges in the limit \(a \to 0 \).
- \(rS\chi PT \) (or more precisely, its PQ version) can be used to fit lattice data and extract physical results.
• Once $rS\chi PT$ is validated as the correct chiral theory:
 – easy to check that continuum χPT emerges in the limit $a \to 0$.
 – $rS\chi PT$ (or more precisely, its PQ version) can be used to fit lattice data and extract physical results.
 – that was what was done for all results presented earlier.
Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.
Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.

A lot of useful physics has resulted
Remarks & Outlook

• Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.

• A lot of useful physics has resulted
 – almost all of it dependent on χPT, in particular partially quenched and rooted staggered versions.
• Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.

• A lot of useful physics has resulted
 – almost all of it dependent on χPT, in particular partially quenched and rooted staggered versions.

• Other methods have caught up considerably, but staggered approach remains among the fastest.
Remarks & Outlook

• Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.

• A lot of useful physics has resulted – almost all of it dependent on χPT, in particular partially quenched and rooted staggered versions.

• Other methods have caught up considerably, but staggered approach remains among the fastest.
 – MILC is now starting new simulations using “HISQ” staggered action (developed by HPQCD group).
Remarks & Outlook

• Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.

• A lot of useful physics has resulted
 – almost all of it dependent on χPT, in particular partially quenched and rooted staggered versions.

• Other methods have caught up considerably, but staggered approach remains among the fastest.
 – MILC is now starting new simulations using “HISQ” staggered action (developed by HPQCD group).
 – taste violations reduced by factor of 3
Remarks & Outlook

- Over the last decade rooted staggered quark action has been by far the fastest fermion method for simulating QCD.
- A lot of useful physics has resulted — almost all of it dependent on χPT, in particular partially quenched and rooted staggered versions.
- Other methods have caught up considerably, but staggered approach remains among the fastest.
 - MILC is now starting new simulations using “HISQ” staggered action (developed by HPQCD group).
 - Taste violations reduced by factor of 3
 - Results with significantly improved precision likely.
• Both lattice QCD and χPT have come a long way since the 80’s.
Both lattice QCD and $\chi^P T$ have come a long way since the 80’s.

Chiral effective theories are indispensable for effective use of lattice QCD.
Remarks & Outlook

- Both lattice QCD and χPT have come a long way since the 80’s.
- Chiral effective theories are indispensable for effective use of lattice QCD.

Thanks so much, Mike, for all you taught me about both subjects!